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1.0 INTRODUCTION

1.1 Summary

Continuous fiber composite laminates are known to undergo a substantial
amount of compiex load-induced damage which can adversely affect component
performance. The nature of laminated composites is such that the material
heterogeneity acts not only as a crack initiator, but also as a crack
arrestor. Therefore, it is desirable to develop a model which accounts only
for the average effects of small scale microcracks on the macroscale problem
of interest. This approach, called continuum damage mechanics, has been
successfully applied to isotropic media such as metals and concrete [2,3].
However, the application to laminated orthotropic composites has not been
successfully demonstrated at this time. The principal difficulty in laminated
composites, unlike metals and concrete, is that the layered orthotropy of the
medium produces multiple damage modes, each possessed of some degree of
anisotropy. Therefore, whereas it is often sufficient to deal with a single
isotropic (scalar valued) damage tensor in initially isotropic and homogeneous
media, this simplicity cannot be utilized in 1laminated composites.
Furthermore, each of the damage mechanisms is interrelated and extremely
difficuit to distinguish experimentally. Finally, the damage may not be
considered to be statistically homogeneous through the laminate thickness.
Nevertheless, the application of continuum damage mechanics to laminated
composites appears to be a fruitful quest because the alternative would be to
attempt to solve a highly anisotropic multiply connected boundary value
problem.

The ultimate objective of any continuum mechanics model is to design
structural components so as to avoid failure. In the sense that laminated
composites fail due to a complex sequence of damage events, it is essential to
capture the important features of the damage process in order to accurately
predict failure. Obviously this will be a complex task in laminated
composites, but, as Einstein once put it, a good theory should be as simple as
possible but no simpler than that.

The essential features of a continuum damage model for laminated
composites are as follows: 1) identification and rigorous definition of the
internal state variables characterizing each of the damage modes; 2)




development of stress-strain-damage constitutive equations; and 3)
construction of damage evolution laws which accurately predict the genesis of
each of the damage internal state variables as a function of load history.
The primary difficulty lies in accomplishing this task in such a way that the
model is independent of stacking sequence.

This report summarizes research compieted during a four year period under
AFOSR grant no. AFOSR-84-0067 and originally detailed under Texas A&M Research
Foundation proposal no. RF-84-34 and dated October 1983. The objective of
this research has been to develop an accurate damage model for predicting
strength and stiffness of continuous fiber laminated composite media subjected
to fatigue or monotonic loading and to verify this model with experimental
results obtained from composite specimens of selected geometry and makeup.
Further detailis of this research can be found in the three previous annual
reports available either from AFOSR or the author.

1.2 Statement of Work

The following is a brief summary of work performed under the grant:

1) develop constitutive equations relating stresses to strains and damage
internal state variables (ISV's) which may be used in a stress gradient
field;

2) develop ISV growth laws as a function of load history for matrix
cracking, interlaminar fracture, etc.;

3) develop finite element algorithms capable of evaluating ply properties in
damaged components; and

4) perform experiments on components with selected stacking sequences in
order to verify the model.




2.0 RESEARCH OVERVIEW

2.1 Summary of Completed Research

A substantial body of research has been completed under this grant, as
evidenced by the publication 1ist (see Section 3) and the thesis abstracts
(see Section 4). The following is a summary of the major accomplishments to
date.

1) In order to gain some insight about the general makeup of damage in
laminated continuous fiber composites, two primarily experimental studies were
undertaken (Section 2.2).

2) On the basis of the experimental studies, a general framework was developed
using continuum damage mechanics to characterize the response of laminates
with matrix cracks, and this model was compared to experimental evidence
(Section 2.3).

3) The second order tensorial nature of the damage parameter was successfully
demonstrated for the case of curved matrix cracks (Section 2.4).

4) Using the model developed above.a procedure was constructed with the aid of
fracture mechanics to characterize the damage state for any laminate (Section
2.5).

5) The model was then extended to account for both matrix cracks and
delaminations, and was successfully compared to experimental results (Section
2.6).

6) A micromechanics solution was obtained for laminates with matrix cracks and
this result was utilized to demonstrate that the model is exact for the case
of evenly distributed matrix cracks of constant size (Section 2.7).

7) The procedure was demonstrated for calculating ply level stresses and the
effects of damage on these stresses (Section 2.8).
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8) Development of damage evolution laws was initiated (Section 2.9).

9) A finite element program was developed for calculating the response of
plates with spatially varying damage (Section 2.10).

The research grant has thus far resulted in a total of twelve
publications in the open 1literature (see Section 3), ten conference
presentations and two invited lectures (see Section 6). In addition, the
program has produced two Ph.D.'s and four masters of science (see Secticn
4). A1l of these students have gone on to high visibility research positions
(see Section 5).

The details of the research completed to date are contained in the
research publications listed in Section 3, several of which are included in
the appendix to this report. In the following sections the major achievements
will be reviewed. However, in order to make this document more easily
readable, these accomplishments will be discussed in summary rather than in
detail.

2.2 Experimental Studies of Damage

The research program was initiated with a literature survey [1] which was
undertaken to ascertain whether sufficient experimental data were available in
the literature to obviate the necessity for performing in-house testing. It
was found that no currently available research contained sufficiently detailed
explanations of damage to characterize the model envisioned in this research
effort. Therefore, it was decided to initiate our own experimental program
under the auspices of the grant. Two M.S. theses resulted from this phase of
the research [2,3].

The first study detailed the initiation and growth of matrix cracks in
graphite-epoxy AS4-3502 cross-ply laminates. Primary attention was placed on
jdentifying the mechanisms of initiation and growth of matrix cracks.
Emphasis was also placed on observing the effect of these cracks on various
components of stiffness loss.

A qualitative analysis was made to determine the significance of the
damage events observed. These included crack density, stiffness reduction,
crack shapes, development of crack surface area, and residual strain,

4




An array of seven cross-ply laminates was selected for study in order to
examine the effect of the number of successive 90° plies on ma;rix crack
damage. In addition, under appropriate loadings a highly developed state of
matrix cracking can be obtained in the laminates without introducing other
modes of damage, such as edge delamination.

In order to document the progression of matrix cracking one must
nondestructively evaluate the damage in each laminate. This was accomplished
by using edge replication and x-ray radiography. A typical edge replica
showing damage in a cross-ply [0/903]; laminate is shown in Fig. 1. In this
figure one can see three distinctly different types of matrix cracks: straight
cracks, partial angled cracks and curved cracks. An x-ray radiograph of this
same damage state is shown in Fig. 2. A straight crack appears as a sharp
narrow band while a curved crack appears as a wider, fuzzy band. A typical
progression of damage development is shown in Fig. 3. Other damage modes,
including interlaminar delaminations and axial splitting, are visible in these
radiographs. Interlaminar delaminations were observed to develop at the
intersection of straight and curved cracks with the 0° interface as well as at
the intersection of axial splits and transverse matrix cracks.

The experimental results showed a correlation between the number of
curved cracks and the relative thickness of the 0° and 90° layers as well as
the number of consecutive 90° plies. The bar chart in Fig. 4 shows the
relationship between straight cracks and curved cracks for an increasing
number of 90° plies in a [0/90,]; laminate. It is interesting to note that
for n greater than 2 there are more curved cracks than straight cracks.

The axial stiffness loss due to matrix cracking in five laminates was
monitored during step-wise monotonic loadings. The stiffness was measured
only on the unloading portion of the axial stress-strain curves. Thus,
stiffness was used to indicate the degree of damage development during any
monotonic loading step. The stiffness results are shown in Fig. 5. Al
curves represent an average of two or more replicate specimen results. The
stiffness values are normalized to the undamaged stiffness and compared to the
total crack density, which is the total number of straight cracks and curved
cracks per unit length of specimen.
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For [0/90,]s laminates, where n=k, 1, 2, and 3, stiffness loss increases
with increasing n. This is explained by the fact that for increasing n more
load is carried by the 90° plies. Hence, for the same crack density (damage),
the laminate with more 90° plies will lose more stiffness. This same trend
can be explained by ply discount, though the ply discount method usuaily
overestimates the total stiffness loss. It is noted that the last data points
for the [0/90/0]¢ and [0/90]5 were taken after application of 95 percent of
the ultimate load, whereas the last data points for the remaining laminates
correspond to the test termination loads when other damage modes began to
occur.

For laminates with identical 0°/90° ratios such as the [0/90]S and
[0,/90,]¢, the laminate with the higher consecutive number of 90° plies shows
greater stiffness loss. This is due to the fact that the laminate with the
higher consecutive number of 90°‘s has more crack surface area for a given
crack density resulting in a larger crack opening displacement. This implies
that the constitutive model should reflect crack opening displacements in
addition to surface area of cracks.

In order to understand what mechanisms control the geometry (location and
orientation) of the curved cracks, a finite element model was developed to
analyze the. stress and strain fields in the vicinity of a straight crack
[4]. Constant strain triangular elements (CST) were used to model an axial
section through the thickness of a laminate. Internal boundary generation was
also 1included. The ply level material constitution was assumed to be
transversely isotropic elastic. The [0/90,]; laminate was selected for
detailed study.

The basic finite element mesh used to model the !0/902]S laminate with a
straight matrix crack is shown in Fig. 6. The squares shown in the figure
actually correspond to two "CST" elements. The broad dark line shown between
the 0/90 interface represents the resin rich region where there are actually
four rows of "CST" elements. The broad dark line shown between the 0/90
interface represents the resin rich region where there are actually four rows
of "CST" elements. More elements were used in the interior 90° layer to
increase the accuracy of the solution.

A typical crack family for a [0/902]s specimen is shown in Fig. 7. From
edge replicas, the mean distance between a straight crack and its nearest

11
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associated curved crack as measured at the 0/90 ply interface was found to be
9.8 mils (0.2489 mm), with a standard deviation of 2.08 mils (0.05283 mm).
These statistical parameters were determined from 25 crack spacing
measurements. The minimum spacing observed was 7.0 mils (0.1778 mm). The
mean angle between the curved cracks and the normal to the interface was found
to be 30°.

The distribution of maximum principal stress near the 0/90 interface
determined by the finite element model is presented in Fig. 8. The principal
stress has been plotted along each of the first three rows of elements, below
the resin rich region. For comparison, Fig. 8 also shows the mean and minimum
crack spacings that were determined experimentally.

The qualitative agreement between the experimental and finite element
results supports the contention that curved cracks are caused by a rotation of
the principal stresses which is induced by a shear lag effect resulting from
the vertical matrix cracks. This phenomenon will be discussed further in
Section 2.4.

The second experimental effort concentrated on the mechanics of
delaminations. The initiation and growth of internal delaminations in
laminated fiber-reinforced composites made of AS4/3502 graphite/epoxy was
studied. Cross-ply laminates of the general type [0n/90m]s were subjected to
a tension-tension cyclic load at 2.0 Hz and R=0.1 to develop internal
delaminations. Isolation of internal delaminations from other major matrix
fracture phenomena was the main reason for selecting cross-ply laminates for
this study.

The X-ray radiography nondestructive method was used to record the
internal delaminations at specified load cycles. In addition, Scanning
Electron Microscopy was used to examine the damage state in the interior of
the laminates. Also, the laminate mechanical properties Exx and vxy were
measured at the cycles where the damage was recorded.

Following the characteristic damage state (CDS), all laminates first
developed axial splits and then internal delaminations. Matrix fracture in
the 0° layers initiated along transverse matrix cracks. Internal
delaminations initiated at interfacial points where axial splits intersected
transverse cracks. Two distinct patterns of axial splits and delaminations
were observed. The [02/902]S laminate developed axial splits which completely

14
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extended to the specimen ends as shown in Fig. 9. Internal delaminations
initiated at internal corner points and grew along axial splits to form
axially continuous delaminations.

The [0/90,1¢, [0/903], and [0/90]¢ laminates first developed short axial
splits and then internal delaminations which initiated at internal corner
points. The delaminations preferred to initiate early in the fatigue life
along closely packed transverse crack fronts intersected by a relatively large
number of short axial splits as shown in Figure 10. These delaminations
coalesced to form a continuous transverse delamination.

A1l laminates experienced a decrease in the axial modulus, E,,, and in
Poisson's ratio, vxy. The axial modulus exhibited a relatively small decrease,
whereas the Poisson's ratio changed by a factor of 2 to 4 depending on the
stacking sequence.

A stress analysis was employed to interpret the initiation and patterns
of matrix cracking and delamination growth [4]. The results of the stress
analysis were consistent with the observed experimental results. The
analytical results suggest that axial splits initiate at transverse matrix
cracks and delaminations initiate at the intersection of transverse and axial
matrix cracks. The rate of growth of axial delaminations depends on the
maximum stress, density of axial splits, and on the relative position of the
axial splits along which the axial delaminations grow.

The observations made during the experimental program suggested several
important factors which would have to be included in the model in order for it
to be useful as a general theoretical tool. First, the model should include
both matrix cracks and delamination damage parameters as independent state
variables. Second, because different stacking sequences with identical
numbers of plies could experience vastly different damage, the model must be
independent of stacking sequence; that is, given the same input, the model
should be capable of predicting different damage states for different stacking
sequences. Third, because the same stacking sequence could undergo different
damage states for differing load histories, the model must be capable of
reflecting the effects of load history. Fourth, because different crack
orientations produce widely varying stiffness reductions, the model must be
tensorial in nature. Finally, it was found that the geometry of cracking in
quasi-isotropic laminates with both matrix cracks and delaminations was so
complex as to preclude an accurate micromechanics solution.

16
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2.3 General Framework of the Damage Model

The experimental program elucidated the need to develop a theoretical
damage model which was capable of accounting for the effects of microcracks on
component strength and life without resorting to a detailed analysis of each
crack. Therefore, a technique was sought which would accomplish this as
rigorously as possible.

In 1958, L. Kachanov proposed a novel approach to modelling the effect of
microcracks on the overall response of homogeneous and isotropic media [5].
In this approach, the effect of microcracks is reflected in thermomechanical
constitutive equations rather than by including numerous time-dependent
internal boundary conditions. Because the resulting procedure produces a
simply-connected, or continuous boundary value problem which is considered to
be "equivalent" to the actual domain with microcracks, the methodology has
been termed continuum damage mechanics. Although Kachanov's approach was
initially heuristic, a broad field of study has developed from that embryonic
state [6,7]. However, until recently most efforts have been empirical and
confined to initially isotropic media.

In the current research effort it was decided to attempt to produce a
stronger theoretical footing for the continuum damage mechanics approach, and,
in so doing, hopefully simultaneously developed an extension to layered and
orthotropic media. This was initially accomplished for the case of laminates
with matrix cracks and its usefulness was demonstrated by comparing to
experimental evidence [8,9].

A continuum damage model must contain four essential ingredients in order
to be complete: 1) stress-strain-damage equations; 2) damage evolution laws
for the damage ISV's; 3) a failure function describing local failure in terms
of the damage ISV's and observable state variables; and 4) an algorithm for
solving boundary value problems in which the state is nonhomogeneous. If
steps one through three can be accomplished accurately, then step four is
relatively straightforward, involving a procedure not unlike extending an
elastic algorithm to include plasticity.

At this point in the model development steps 1 and 4 are essentially
completed, and step 2 1is well underway. Step 1 for the case of matrix
cracking is discussed in this section, and the extension to include
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delamination is summarized in Section 2.6. Step 2 is developed in Section
2.9, and step 4 is discussed in Section 2.10.

To proceed with the model development, consider an initially unloaded and
undamaged composite structural component, denoted B, as shown in Fig. lla,
where undamaged is defined here to mean that the body may be considered to be
continuous (without cracks) on a scale several orders of magnitude smaller
than the smallest external dimension of the component. Although cracks may
exist in the initial state, their total surface area is assumed to be small
compared to the external surface area of the component. Under this assumption
the body is assumed to be simply connected and we call the initial boundary
surface the external boundary S. Although the component is undamaged, there
may exist local heterogeneity caused by processing and second phase materials
including fibers, matrix tougheners and voids. In addition, the body may be
subjected to some residual stress state due to processing, cool down, etc.

Now suppose that the component {is subjected to some traction and/or
deformation history, as shown in Fig. 1lb. The specimen will undergo a
thermodynamic process which will in general be in some measure irreversible.
This irreversibility is introduced by the occurrence of such phenomena as
material inelasticity (even in the absence of damage), fracture (both micro-
and macroscale), friction (due to rubbing and/o slapping of fractured
surfaces), temperature flux, and chemical change. While all of these
phenomena can and do commonly occur in composites, in the present resear~ch it
will be assumed that all irreversible phenomena of significance occur in small
zones near crack surfaces. Outside these zones, the behavior will be
considered to be elastic and therefore reversible under constant temperature
conditions. A1l fracture events will be termed damage. ODue to these fract're
events, the body will necessarily become multiply connected, and all newly
created surfaces not intersecting the external boundary will be termed
internal boundaries. Because of the above assumptions the model may be
limited to polymeric and ceramic matrix composites at temperatures well below
the glass transition temperature Tg or melting temperature, where
viscoelasticity in matrix materials is small. Metal matrix composites may
have to be excluded due to complex post-yield behavior of the matrix.

While fracture involves changes in the boundary conditions governing a
complex field problem, it is hypothesized that one may neglect boundary
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condition changes caused by creation and alteration of both internal and
external surfaces created during fracture as long as the resulting damage in
the specimen is statistically homogeneous on a local scale which is small
compared to the scale of the body of interest. However, the total newly
created surface area (which includes internal surfaces) may be large compared
to the original external surface area. Under the condition of small scale
statistical homogeneity all continuum based conservation laws are assumed to
be valid on a global scale in the sense that all changes in the continuum
problem resulting from internal damage are reflected only through alterations
in constitutive behavior. Typical microstructural events which may qualify as
damage are matrix cracking in lamina, fiber/matrix debonding, localized
interlaminar delamination and fiber fracture.

Now consider some local element labelled V|, and with external surface
faces S, arbitrarily chosen normal to a set of Cartesian coordinate axes (xl,
X9, x3), as shown in Fig. llc. The element V| extracted from 8 and the newly
created surfaces, denoted 52 and with volume Vc' are subjected to appropriate
boundary conditions so that the element response is identical to that when it
is in B. Ffurthermore, the volume of the element is defined to be Vi, which
includes the volume of any initial voids. The scale of Vi is chosen so that
its dimensions are small compared to the dimensions of B, but at the same
time, the dimensions of V| are large enough to guarantee statistical
homogeneity of the material heterogeneities and defects in V| even though the
total surface area of defects may be of the same order of magnitude as Sl'
Suppose furthermore that in the absence of defects or at constant damage state
the material behavior is linearly thermoelastic. Now consider the Tlocal
volume element V| . For the case where tractions or displacements are applied
uniformly to the external boundary of VL, the average stresses and strains in
VL will be determinable from the external boundary tractions or displacements.

Although the damage process actually involves the conversion of strain
energy to surface energy, the fact that the damage is reflected in the local
constitutive equations rather than boundary conditions suggests that it be
treated as a set of energy dissipative internal state variables which are not
discernible on the external boundary of the local element.

Under the conditions described above the pointwise Helmholtz free energy
per unit volume h of the undamaged linear elastic medium may be expressed as a
second order expansion in terms of strain €43 and temperature T as follows:
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hz=u-Ts =h(e;;,]) =

1J

1 1 2
where u and s are the internal energy and entropy per unit volume,
respectively, and A, Bij' Cijkl' D, Eij and F are material parameters which
are independent of strain and temperature and AT = T-TR, where Tp is the

reference temperature at which the strains are zero at zero external loads.

It is our intention to construct locally averaged field equations which
are similar in form to the pointwise field equations. In performing this
averaging process the pointwise Helmholtz free energy described in equation
(1) will undergo a natural modification to include the energy conversion due
to crack formation.

Now consider the local element shown in Fig. llc with traction boundary
conditions on the external surface S;. In addition, the interior of V| is
assumed to be composed entirely of linear elastic material and cracks (which
may include thin surface layers of damage). Integrating pointwise equation
(1) and the conservation laws over the local volume will result in

le

- 1
her = AL * BLiserig * 2 Cuignaciagca * DT * EgeigfTL * 2 Fe L (2)

where AL’ BLij’ CLiJk]’ DL’ ELij’ and FL are ]Oca]]_y ﬂVQrdgEd material
constants, and the subscript L implies local averaging. Also,

91,5 = O (3)

oLij = oL (4)
oLijeLig * g, = ML (5)
éL-%qu).a 2 0 (6)

where uL, called the effective local internal energy, is given by
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Ug, represents the internal energy of the equivalent uncracked body, given by

. 1 . 1 E.
Lv LS
L 2
where TE are called equivalent tractions, representing tractions in the
uncracked body acting along fictitious crack faces, as described in detail in

Appendix 7.1, and uf is the mechanical power output due to cracking, given by

<C _ l C-
o = - § { T;u.dS (9)
L S2
where T? are fictitious tractions applied to the crack faces which represent
the difference between the actual crack face tractions and TE. Furthermore,
the locally averaged stress is given by

1
o5 =V J oijdV (10)
L%

and the locally averaged strain is given by

Ly : i I3 (ugny + ugn,)ds (11)

1

where n; are components of the unit outer normal vector to the surface $;.
Equations (2) through (6) are identical in form to the standard pointwise
conservation laws.

On the basis of this similarity we now define the locally averaged
Helimholtz free energy:

C=h ¢ (12)

h_ = LSL = VgL - TiSp oy = hg tyg

L:UL-T

where it can be seen from definition (8) that hg  is the locally averaged
elastic Helmholtz free energy for which residual damage is zero.

The similarity between the pointwise and local field equations leads to
the conclusion that
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= -7 (13)

(o
ah 3u
= aeL = aeEL + aeL (14)
Lij Lij Lij

OLij

Equations (14) serve as the basis for thermomechanical stress-strain
relations in damaged composites. A1l damage is reflected through the local
energy due to cracking uE. This term is modelled with internal state
variables characterizing the various damage modes.

In order to describe the internal state, we first consider the kinematics
of a typical point 0 with neighboring points A and B, as shown in Fig. 12.
Before deformation lines OA and 0B are orthogonal, as shown in (a). After
deformation we image that lines joining 0', A', and B' are as shown in (b),
and just at the instant that deformation is completed, a crack forms normal to
the plane of AOB through point 0', as shown in (c¢). Furthermore, point 0'
becomes two material points 0' and 0" on opposite crack faces and points A'
and B' deform further to points A" and B8". [t is assumed that all
displacements, 1including displacement jumps across crack faces, are
infinitesimal, so that strain gages attached at points 0, A, and B record only
the deformation A"0O'B". However, the actual strain 1is associated with
A"0"B". Therefore, it is essential to construct an internal state varijable
which will relate these two strain descriptions. We therefore construct the
vectors G° connecting 0' and 0" and Ac describing the normal to the crack face
at 0', as shown in (¢). It should be noted that U can be used to construct a
pseudo-strain representing the difference in rotation and extension of 1lines
A"0'8" and A"0"B".

Now recall that the mechanical power output during cracking is given by
equation (9). We assume that at any point in time t; tractions T; can be
applied along the crack faces which will result in an energy equivalent to
that produced by the damage process:

uS(ty) = -7 f TyuSds (15)
S, (t;)
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Crack Faces

FIG. 12. Kinematics of the Damage Process
a) Point "O'" Prior to Deformaticn,
b) Point "0" After Deformation and Prior to Fracture,
¢) Point "O" After Fracture.
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The quantities T; do not necessarily coincide with the terms in the integrand
of (9) since the process is in some measure irreversible. However, we define
them such that the total energies in equations (9) and (27) are equivalent.
For convenience we will call them crack closure tractions, although they do
not necessarily result in complete crack closure.

Guided by the fact that G and A° describe the kinematics of the cracking
process at point 0, we now define the following second order tensor valued
internal state variable:

1 c.C
as: = J uin;dS (16)
ij VL S i
The above description has been previously proposed by M.L. Kachanov [10].
Substituting the above into (15) and utilizing Cauchy's formula gives

(o8
U,

<|v—4A

[ ofa4dS (17)
33
LS,

Therefore, if we define af?j to be the average crack closure stress for

the nth damage mode such that

c 1 (o
1okt = V- J 914498 (18)
L S2
It follows that
c _ cn n
UL = - ULijGL,ij (19)

It is now proposed that ut be expanded in a Taylor series which is second
order in each of its arguments. Substituting this result and (2) into
equation (14) and neglecting higher order terms results in

=B ..+ E ..AT, +C

Lij ¥ BT * Chigtua !

n n
9 1] 13k1°Lk]T (20)

Equations (20) are interpreted as the ply Tlevel equations governing the
response of plies with matrix cracks.

Equations (20) have been implemented to a laminate analysis code to
produce predictions of stiffness loss as a function of matrix crack damage in

27




crossply laminates [9]. Because this procedure is fairly cumbersome to review
here, the interested reader is referred to Appendix 7.2 for the details of
this implementation. The results shown in Figs. 13-15, originally obtained in
1985, gave cause for optimism that the model might be a useful tool for
predicting damage dependent stiffness components. As will be shown in further
sections, these initial results have been substantiated by numerous further
predictions.

2.4 Study of the Tensorial Nature of Damage

Experimental evidence indicates that curved matrix cracks can occur in
significant quantities 1in cross-ply laminates [2]. As a measure of the
capability of the model to predict stiffness loss components other than the
axial stiffness, it was decided to use the model to predict out-of-plane
stiffness loss due to the curved cracks. The procedure will be briefly
reviewed here.

Consider now a local volume element with n. cracks as shown in Fig. 16.
The damage ISV for matrix cracking may be written in the following form

n
C

ajy = ﬁkzl { ugn ds (21)
Sk

where matrix cracking is designated by the superscript 1. Now define

1k 1
S

so that equation (21) may be written

C
1oy oK (23)
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FIG. 16. Description of Curved Crack Geometry in a

Single Crossply
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Now, since a%j is a second order tensor,

k 1k

5%j = z a p' ajq. epig! (24)
k=1

where aﬁp. are the direction cosines relating the coordinates of the kth
crack to the laminate coordinates. Differentiating (24) with respect to the
midplane strain components gives

aa} nC k aal¥ '
. 7 oal, —P 9 (25)
e 1p° 3¢

mn k=1 mn

Transforming to the coordinates of the crack gives

-1 n 1k k
da (od 3a_, ae
ae1 =1 a:p'agq ae s
mno 3e r gt N
k .k 3°é$g'
- z a1p'ajq'amn'ans' 2 (26)

rlsl

However, since it is assumed that 3022/3522 is the only non-zero component,
the above reduces to

3-}' ne K k .k a“% ‘2

3. :

o Z a} 123522 32 T T (27)
k=1 39151

The above equations may be utilized to obtain the last term in the reduced
stiffness equations, where it is assumed that aaz.z./aez.z. is independent of
crack orientation and is obtained from [0,90,0] experimental data [2]:
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n _ n 9 _ -
9 =kz1(cij)ktk+k21 jzl(lii)k(zk'zk-l) (33 j/3ep) (28)

where S%m are the components of the effective laminate stiffness, n is the
number of plies, and overbars denote quantities measured in laminate
coordinates.

Comparison of the model prediction to experimental results for axial
stiffness loss in a [0,90,]; laminate is shown in Fig. 17. Although these
results are encouraging, the truly exceptional results are shown in Fig. 18.
In this figure out-of-plane stiffness predictions are compared to finite
element calculations. It was necessary to compare to FEM results for the out-
of -plane component because experimental techniques are not yet available for
accurately predicting out-of-plane stiffness. The results indicate that the
model is erroneous without the curved crack correction, but are quite accurate
when the second order tensor transformation is included for the curved
cracks. This result supports the use of the second order tensor damage
parameter, as opposed to a vectorial representation [11].

2.5. Theoretical Development of Energy Release Rates For Interior
Delaminations

A fracture mechanics approach has been used to deveiop an expression
relating the ISV's to the surface area of delaminations. During loadup when
the delamination surface area is growing, an energy formulation may be
employed to relate the ISV to the strain energy release rate of
delaminations. The energy loss in the local volume due to delamination,

(uﬁ)d, is related to the strain energy release rate of delaminations, G4, as
follows

wWHd =4 [ (29)
L s,

where Sy is the surface area of delaminations. Following the constitutive
mode1 development, the local energy loss may also be expressed as
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FIG. 17.Model Comparison to Experiment for Axial Stiffness Loss
in a [0,902]S Laminate
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(wS)d = I?jeua‘; (30)

where ug are the ISV's for delamination damage.

For the case of symmetric damage in symmetric laminates, the damage-
dependent longitudinal modulus is obtained by differentiating the damage
dependent laminate equations with respect to €y Furthermore, considering only
one delamination interface location, the longitudinal modulus is given by

0 (2)- 2,) 203

M
Ey = 1(°1l)k(zk‘zk-1)(:Tx)k M— ™ (31)

X EXO

Hes-2o

1
ty

where Exo is the initial undamaged modulus and t is the laminate thickness.

Now considering only a single symmetric delamination site and only that
part of the energy associated with crack-opening displacements in the x
direction, we may equate (29) and (30) to obtain

a3 = —L f[egds (32)

VLQIeX Sd

where I?j has been set equal to 61 for a single delamination site. As a first
approximation, the 0'Brien [12] strain energy release rate model for free
edge delaminations will be assumed to be valid for internal delaminations and
is expressed as

ezt

6y =25 (E - E) (33)

where t is the laminate thickness and
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£ = —— (34)

where m is the number of sublaminates formed by the delamination and E; is the
longitudinal modulus of each sublaminate. Substituting (33) into (32), and
integrating the delamination ISV results in

et *
ay = E— (E, - E) S, (35)

2 VLQI

For the single delamination site,

where S is the total interface surface area and t1 is the thickness of the two
layers adjacent to the delamination. Substituting equation (36) into (35)
results in

(E, - E*) S

D _1 d

a3 = 35 ex(—tl) —X 6- ) ("’S ) (37)
1

Now differentiating with respect to €y s We obtain

wo
*
(%]

E -E
1 ,t X
-3 @) =) & (38)

da

Q@
x

€

Therefore, to predict the degraded axial moduius of a laminate we need
standard laminate analysis data, the delamination site, and the fraction of
the total delaminated area in the local volume. Equation (38) analytically
addresses the influence of laminate stacking sequence and delamination site on
the degraded modulus and requires only an experimental measurement of the
delamination surface area.
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2.6 Extension of the Model to Account for Delaminations

Research is underway to extend the current model to predict the response
of laminates with both matrix cracks and interior delaminations, as shown in
Fig. 19. This problem is complicated by two factors. First, because these
two damage mechanisms are oriented differently, they require two separate
tensor-valued damage parameters. Furthermore, the mechanics of these two
damage modes are substantially different. The matrix cracks may be assumed to
be statistically homogeneous over each ply in a small local volume element.
Therefore, classical local volume averaging may be used to obtain this damage
parameter. On the other hand, delaminations are not statistically homogeneous
in the z coordinate direction. This requires that a modification be made to
statistical averaging techniques. Although statistical homogeneity is assumed
in the x and y coordinate directions, a kinematic constraint similar to the
Kirchhoff-Love hypothesis 1is employed in the z direction. The resulting
damage parameter is a weighted measure of damage, with cracks farther away
from the neutral surface causing a greater effect on material properties.

The ply level stress-strain relations are given by

%5 = Cijkaleng - ayy) (39)

In order to account for interply delamination the following kinematic
assumption is made (See Fig. 20.):
_ .0 o D D
u(x,y,z) = u-(x,y) - z[g"~ + H(z-z/ )8, ] + H(z-z )u, (40)

and
wix,y,2) = wo(x,y) - H(z-z, )W (41)

where u is the in-plane displacement and w is the out-of-plane displacement.
Furthermore, 8 represents rotations of the midplane. The quantities with
superscripts o are midsurface values, and quantities with superscripts D are
caused by interlaminar cracking.
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FIG. 19. Crossply Laminate
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FIG. 20.

KINEMATICS OF INTERIOR DELAMINATIONS
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Employing standard laminate averaging techniques will result in the
following laminate equations

N =1 o, Ly 2 _ ;2
=1z [Q]k(zk - zk-l) {EL} ] b [Q]k(zk = zk-l) {‘L}
k=1 k=1
R 0, 7 M 42
_i i - 21_1) {CL}i -1z [Q]k(zk = Zk_l) (G }k ( )
i=1 k=1
< N n
_ 1 2 2 0 1 3 3
M} = 5 I [Ql (7, - z,_q) (e} -3 I (Ql (z - z,_y) (e }
k=1 k=1
d
S HNUNERE Rt
i=1
n
Tt - ) o, @)

where {N} and (M} are the resultant forces and moments per unit length,
respectively, and {uM}k and {aE}1 represent the damage due to matrix cracking
and interply delamination, respectively. Details of this development are

given in Appendix 7.3.

Utilizing the procedure outlined in Section 2.5, the model has been
compared to experimental results for both cross-ply and quasi-isotropic
laminates with both matrix cracks and delaminations.

While the damage-dependent laminate analysis model may be used to predict
any of the effective engineering moduli of a laminate, experimental results
are only available for the axial modulus and Poisson's ratio. Therefore, the
general utility of the model will be demonstrated by comparing model
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predictions to experimental results for E, and Vyy for only the fully
developed damage states. A typical x-ray radiograph is shown in Fig. 21. The
delamination interface location was determined experimentally and the
delamination area was estimated from the x-ray radiographs using an optical
planimeter procedure. In both the model analysis and data reduction, it was
assumed that the delamination sites were symmetrically located about the
laminate midplane and contained the same delamination surface area.

The bar chart in Fig. 22 compares the model predictions to the
experimental values of the engineering modulus, E,,
cracking and delamination. The delamination interface location and percent of
delamination area are listed in the figure underneath the laminate stacking
sequence. As can be seen, the comparison between model results and the
experimental results is quite good. Some limited results for Poisson's ratio
are given in Fig. 23 using the same bar chart format. With the exception of
the [0/902]S laminate, these results are also quite good. The experimental
value for the [0/902]s laminate is quite suspicious since this laminate
exhibits a much larger change in Poisson's ratio than the other laminates
without a corresponding difference in the delamination surface area. It
should be noted that values of Poisson's ratio for the quasi-isotropic
laminates are not available.

for combined matrix

2.7 Micromechanics Model Verification

Because the ISV definition given by equation (16) is locally averaged, it
represents a quantity which is -not exact under certain circumstances.
Furthermore, since the geometry of many cracked laminates is so complex as to
preclude an exact micromechanics analysis, the author has utilized the
phenomenological approach for measuring the damage state described in Section
2.5. Finally, the model has previously been compared only to experimental
results. For these reasons it was felt that some research was warranted to
place the ISV formulation on a stronger theoreticai footing. This was
accomplished by formulating a micromechanics solution for a single ply with
matrix cracks and incorporating this into a laminate analysis scheme. This
research is summarized in this section, and a detailed discussion is contained
in Appendix 7.10.
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Consider a laminated composite material with an infinite number of 0 and
90 degree layers as illustrated in Fig. 24a. Since the crack patterns in 90
degree layers may be random, displacement fields in each crack element
surrounded by two adjacent crack surfaces and two material interfaces are
different. It is apparent from Fig. 24a that a solution to the boundary value
problem for all possible displacement boundary conditions is impractical, or
at least very cumbersome to obtain. A relatively simple solution may be
obtained by postulating a fictitious boundary value problem which represents a
statistically arranged volume element shown in Fig. 24b. The mutual influence
between cracks in different 90 degree layers may be implicitly taken into
account by assuming the y and z plane to remain plane throughout deformation
under the axial tensile loading, P, at far-field. The displacement fields may
then be assumed as

u= (u/a)x+7] ] a, sinax cossy
mn
v = -(v,/t)y
(44)
W= -(wO/b)z
wherem, n =1, 2, 3, ..., k
a = (2m-1)n/2a (45)

8 = (2n-1)x/2t

Using the minimum potential energy theorem, it can be determined that

c2

c..C._-
1
w_ /a = (p/2t) -XLm—LZZ R (46)
0 det C1j 1‘4 e
64c XX

and the axial component of the damage tensor is

Ox = ;1 2 (47)
I — - C
64 ~ “xx
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where

g - ) ’

(48)
m g C  (2n-1)%(2n-1) + ny(a/t)z(Zn-1~)4

A11 other components of %33 are zero.

The effective stiffness matrix for a [0q/90r]S laminate under in-plane
biaxial tensile loading becomes

aC + r(1-2,)Cp  [a(l-zg) + rlC
[cij] N [q+r(1‘C2)]cLT Q(I'Cl)c'rr +r CLL (49)

where

[ 1 5 (50)

CovCzz - ¢ 4

_IX__T___TXE J__C
det Cij 64¢ XX

The comparisons illustrated in Fig. 25 and Fig. 26 verify that the
present model gives a fairly accurate prediction of the degraded axial
stiffness as a function of the crack density for two commonly used material
systems. Furthermore, it should be noticed that the crack density (number of
cracks per unit length) is not appropriate for representing the matrix crack
characteristics. As an example, consider [On/QOn]S specimens. If the crack
density is utilized as an independent parameter, the normalized stiffnesses of
(0/90] g and [0,/90,]5 will be different at the same crack density as shown in
Figs. 7-a and 7-b. This violates the most important assumption in continuum
mechanics, i.e., observable state variable are independent of the size of the
domain of interest. On the contrary, the ratio of the crack length to the
distance between two adjacent cracks, t/a, eliminates this inconsistency as
illustrated in the same figures.

The analytical solution to the crack parameter, 2o includes the crack
interaction in an explicit form. Furthermore, the internal state variable,
&y results directly from the strain energy loss due to matrix cracks [8].
By combining the present problem sclving technique with the study of Allen, et
al. [8], the strain energy release rate at a given matrix crack damage state
can be predicted analytically. However, the internal state variable presented
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herein may not be exact under the following conditions.
(1) When the matrix crack size and spacing cannot be assumed to be
homogeneous.
(2) When the matrix material is viscoelastic.
(3) When the matrix cracks are dominated by microcracks rather than by those
that cross the entire specimen width.

2.8 Determination of Ply Level Stresses

It is gen_rally hypothesized that the growth of damage is driven by local
stresses, which are in turn affected by the damage process. Therefore,
although damage may not profoundly affect stiffness, it cannot be ignored in
the prediction of failure.

In this section, the model is used to predict the effects of both matrix
cracks and delaminations on ply level stresses. It is shown that the stress
distribution is substantially altered by the damage state. Furthermore, the
predicted stresses are significantly affected by stacking sequence. The
outcome of the research is to show how the development of damage causes stress
redistribution which drives the development of new damage modes.

It is assumed that the effects of matrix cracking are reflected in the
ply level stress-strain relations [9]:

’ ~ — - M
oL, Oy Qp Q3 Q4 U Q4 rCLX - Gk
M

L, Q2 Qp Q3 Oy Qs Qe L “a_y | (51)
°L, >= Q33 Q3 Q33 034 035 U L, ~ %2z
(I s Qa4 Qa4 Qg Qs Qe ", O
oL Qs Qs Q35 Qs s Qg6 -0
X2 X2 M
L,y Q6 Q%6 Qg Qg Q56 Qg6 Ty

where the locally averaged strains are given by
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il N -

D D
el = -2l +H(z-zy) agi] + H(z-2,) a3,
X X X
D D
€ = EE -2 [KL + H(Z-Zi) a41] +H (Z—Zi) aj
y y y
g = eE + H(Z-Zi) a?i
Z Z
g = sﬁ -z [KL + H(z-zi) °21]
yz yz yz
0 D
€ = g -2 [k + H(z-2;) ag;l]
LXZ LXZ LXZ ! 51
0
€ = e -2« (52)
Ly ey Ly

The observable quantities on the right hand side of the above equations
are the midsurface strains, eﬁj, and rotations, kL3 These quantities
normally come from the solution of the associated boundary value problem, as
described in Section 2.10. The internal state variables are obtained from
evolution laws of the general form

. . M D

°?j = “?j(ekz’T’ o kg @ ) (53)
and

. . M D

u?j = u?j(ekz, T, Ggs akz) (54)

Thus, equations (51) may be utilized to evaluate the "far-field" damage
dependent stresses in each ply.

A computer code has been constructed to determine the effect of damage on
the "far field"” ply stresses in composite laminates. Results presented are
for a given laminate strain €0 = .01 (a1l other strains assumed to be
zero). Damage variables have been calculated for matrix cracks in a
saturated damage state assuming ug = ,0001". The off-axis and 90° plies use
the matrix crack damage terms of cg and og, respectively. No damage is
assumed in the 0° plies. Since the laminate is subjected only to €x0® ag is
assumed to be the only delamination damage component. This term is calculated

for an equivalent delamination area with ug = .00001".
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The results obtained from the model are shown in Table 1 and Figs. 27 and
28. As evidenced from the result, the damage significantly affects the far-
field ply stresses. Matrix cracks have a significant effect on ply stresses
in the 90° plies in cross-ply laminates. The largest number of matrix cracks
is evident in the 90° plies of the [02/902]S laminate resulting in a thirty-
four percent far-field ply stress reduction. The two quasi-isotropic
laminates develop different damage resulting in dissimilar far-field ply
stresses. The [90/%45/0], 1laminate exhibit 1ittle matrix cracking and
corresponding reduction of ply stress in both 90° and %45 plies. The
[0/£45/90] laminate exhibit a similar stress reduction in the *45° plies, but
shows a substantial stress reduction (fifteen percent verses one percent) in
the 90° plies when compared to the [90/:45/0]S laminate. It should be noticed
that only the stresses in plies between delaminations are affected by the
delamination. This is a result of symmetric delamination damage about the
midplane of the laminate. For this damage state, the resulting ug terms are
equal in magnitude, yet opposite in sign. It is apparent that for fixed
strain and a symmetric damage state, the laminate strains are affected only in
the region between the delaminations. The matrix cracks are shown to alter
the constitutive nature of the plies, and delamination effects are
incorporated into the 1laminate through the laminate equations. This
alteration in ply stresses will significantly affect the growth of new damage
in the composite.

Results of this work illustrate that the stress state in the laminate is
substantially influenced by damage. In the [0,/90,]; laminate, matrix cracks
and delaminations reduce the stress in the 90° plies by almost sixty
percent. For cross-ply laminates, the damage induced ply stress reduction
varies from about forty to sixty percent of undamaged stress in the 90°
plies. Stress reduction in angle-ply laminates is less dramatic (depending on
location and size of the delamination). This alteration in stress state is
critical in determining both the magnitude and location of damage development.

2.9 Development of Damage Evolution Laws

The prediction of damage evolution can be likened to the development of
equations predicting S-N curves in metals (such as Miner's rule [18]).
However, in the case of laminated composites, this phenomenological approach
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Table 1. PLY STRESSES RESULTING FROM MATRIX
CRACKING AND DELAMINATION

LAMINATE PLY INITIAL STRESS STRESS DELAMINATION MATRIX
PLY STRESS W/MATRIX  W/MATRIX LOCATION AND DAMAGE

o (ksi) CRACKS CRACKS & MAGN I TUDE VARIABLES

DELAM. 0 M M

o (ksi) o (ksi) ag oy ag

[0/90] ¢ 0 211.4 211.4 211.4 0/90 0 0

90 14.0 9.6 8.5 16.6% .00318 0

.00076

10/90,] 0 211.4 211.4 211.4 0/90 0 0

90 14.0 9.5 7.9 24.2% .00326 0

90 14.0 9.5 7.9 .001109 .00326 0

[0,/90,] ¢ 0 211.4 211.4 211.4 0 0

0 211.4 211.4 211.4 0/90 0 0

20 14.0 9.2 6.0 49.5% .00344 0

S0 14.0 9.2 6.0 .002267 .00344 0

[0/903] 0 211.4 211.4 211.4 0 0

90 14.0 10.6 8.3 0/90 .00247 0

80 14.0 10.6 8.3 35.3% .00247 0

90 14.0 10.6 8.3 .001617 .00247 0

[0/£45/90] ¢ 0 211.4 211.4 211.4 0 0
' 45 64.4 64.0 64.0 -45/90 0 .00067
-45 64.4 64.0 64.0 57% 0 -.00067

90 14.0 11.8 8.2 .002611 .00157 0

[90/£45/0] ¢ 90 14.0 13.9 13.9 . 00060 0
+45 _ 64.4 64.0 64.0 +45/-45 0 .00067
-45 64.4 64.0 48.7 52% 0 -.00067

0 211.4 211.4 161.0 .002382 0 0
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possesses the distinct disadvantage that a new evolution law must be
hypothesized for each stacking sequence because there is no underlying
physical interpretation of the mechanics in the problem. The current model is
independent of stacking sequence because it utilizes the damage parameters in
each ply to determine the far-field ply stresses in each ply, so that damage
evolution in each ply depends directly only on the state within that ply.
Thus, the effects of adjacent plies are accounted for via the dependence of
the ply stresses on stacking sequence as reflected in the laminate equations.

Since the ply stresses determined by this procedure represent locally
averaged values, they must be considered to be far-field stresses, so that
equations (53) and (54) may more properly be written:

M M M

W13 7915 Crar T %ae e Ko Kppe Xpp) (55)
and

-0 _ D M D

295 = %3 (ke T Oer kg Koo Kppe Kppp) (58)

where KI, Kips and KIII are the stress intensity factors, which relate the
far-field stresses to the crack tip stresses for a given crack geometry.
However, it 1is assumed that the geometry of both matrix cracking and
delaminations is sufficiently independent of stacking sequence that the stress
intensity factors may be treated as "material properties" and thus possess the
same stress intensity factor dependence for all stacking sequences. Thus, they
are encompassed implicitly in the material constants required to characterize
damage evolution laws (55) and (56).

It is important to note that the above equations are independent of
stacking sequence. Thus, the growth of matrix crack damage in each ply
depends explicitly only on the stresses in the plies immediately above and
below the delamination. Therefore, it can be seen that equations (55) and
(56) can be developed generically from a single [0,90,0] specimen (or any
other layup), and the same damage evolution law will apply to every ply in a
complex stacking sequence. The rate of growth of damage will depend only on
the stresses determined in each ply by equations (55). Herein lies the most
important aspect of the current model: it may be characterized using simple
layups and then applied to any other stacking sequence.
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Several first generation evolution laws have already been proposed in the
literature for matrix cracks {19-21] and these are being incorporated into the
model in order to obtain a precise form for equations (55). Furthermore,
0'Brien [12] has proposed some evolution laws for delamination, and these are
being considered for equations (56).

The tensorial nature of equations (55) and (56) poses some difficulties
since uniaxial testing will produce only scalar forms of these equations.
Therefore, we are seeking to obtain constraints on the tensorial nature of
these laws (not unlike Orucker's postulate for plastic strain [22]).
Accordingly, we have determined that under isothermal conditions

h_ 3120 (57)
30,'.‘ J '

1]

follows from the second law of thermodynamics. We are now seeking to show
that h is a stable damage potential not unlike that proposed in the damage
models of Dragon and Mroz [23] and Krajcinovic and Fonseka [24] for geologic
media. If such can be shown then significant constraints can be applied, so
that the tensorial nature of equations (55) and (56) can be identified from

uniaxial tests.

2.10 Finite Element Plate Computer Code

In order to develop the capability to analyze structural components with
spatially variable stresses such as plates with holes, equations (42) and (43)
have been 1incorporated in a plate finite element computer code. The
formulation of the governing differential equations for a laminated composite
with damage follows the same procedure as that used for the formulation for a
laminated composite plate with no damage [25]. The difference between the two
formulations becomes apparent when the constitutive displacement equations are
examined. To see how these changes affect the overall formulation, first
consider the equilibrium equations for a plate.

aN aN

—-—-—-x -

ax T ay Px (58)

aN aN

Xy, _Y_

ax Tay Py (59)
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|

2 2 2
M M 3 M

x+2___xl+__l=_p (60)
ax2 Ixay ayz 2z

It is now advantageous to express equations (42) and (43) in matrix form.

{N} = [A] {sﬁ} + [B] (e} + ™+ oD (61)
o] M D
M} = [B] (e} + [D] (x} + (g} + (g} (62)
where
n
(A} = Z (z, - 2, _¢) Q] (63)
1 0,2 2
1§ 33
[D] = 3 kZ]_ (zk = zk-l) [Q].]k (65)
M-y 0,1, " (66
{(f} = —kZI (zk = Zk-l) 02 k {a }k )
n
R G RE A EUANECLN (67)
o, ¢ . =, .0 41 = D
d d+1
T =izl t] [T, ), +121 (2} - %)) [Tyl tap)y (69)

In order to simplify the formulation of the finite element model
considerably, it is expedient to consider the special case of symmetric
laminates. Making this assumption effectively sets the [B] matrix equal to
zero, resulting in a decoupling of the in-plane and out-of-plane laminate
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equations. Since all laminates are not symmeric, later work will be involved
in the incorporation of the [B] matrix into the formulation.

Substituting equation (61) into equations (58) and (59) results in the
governing differential equations for the in-plane deformations of the plate:
2.0 2 o a2vo a2 0

M1 77 * 2 A6 Ty axay + (App * Reg) 3xay * P26 T
ax y
A 3203 A 32\1 3 (fM fD)
+ + = +
66 3,2 16 x (f1+f)
M D
3; (f3 + f3) = - p, (70)
azuﬁ azuf azvﬁ azvf
Moz * (A12 * Ase) 3xay * 2 P26 axay * P22 T2
X ay
2.0 2.0
3 u 3 Vv
L L » 0
+ A + A + — (fM + f2)
2652 “Pes 7 Tax (30 f
3 M Dy
+ay (F+f) =-p, (71)

Similarly, substituting equation (62) into equation (60) results in the
governing differential equation for the out-of-plane deformations.
34w€ a4w° 4 o

—=+40D +2 (D, +20,.)
1173 16 a,(3” 12 66 _‘—fax oy

D

4 (s] 4 o0
aw 2
L L 2 M 0
+D -— (497 +49y)
26 axay3 22 y4 axz 1 1

+40D

22

2
M D D
- (9, *+9)) - my (93 93) = p, (72)
ay
Integrating the governing differential equations, (70), (71) and (72)
against a test function and employing Green's Theorem results in the weak
formulation of the laminated plate equilibrium equaitons. Equilibrium in the

x-direction is given by:
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0
a(su;) a(sv )
L L (o]
(53— P+ —5y Pp dvdx = f su (N.n + nyny) dr
e e
2 T
a(sul) M a(va) M u
e
Q
where
0 0 0 )
u av au av
- _t _L _L -t
Prehn— Ay thew e w
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In equations (73), {78) and (78), a® represents the element area
and r® represents the external boundary of the element.

It is assumed in the formulation of this‘?inite element model that a
total of five degrees of freedom exist at each node. The components of
deformation at a node, k, consist of two in-plane
displacements, ug and vﬁ, one out-of-plane displacement, wz, and two
rotational terms e: and ei. The rotations can be described as the slope of
the normal to the mid-plane after deformation and are described in terms of

the out-of-plane displacement by:

0
w
x _ L
8, = v (82)
0
aw
y _ L
% %~ x (83)

The following displacement fields are assumed to represent the components
of deformation within the element:

e
uJ (84)
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where {s}j = {wj, eg, eg}, w? and °: represent the shape functions for the

element, m is the number of nodes the element contains and p is three times
the number of nodes.

Also,
o_ e _
Ul = ¥ =1, ,m (87)
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suﬁ = @ﬁ =1, «--,p (89)

Substitution of equations (84)-(89) into the weak formulation of the
plate equilibrium equations, (73), (76), and (78) results in the following
system of equations:

11 12 1 1 1
[ K K 0 ] u Fa Fu Fy
21 22 _ 2 2 2
K K 0 v )= FA + FM + FD (90)
33 3 3 3
| 0 0 K™} s FA FM FD
5m x 5m 5m x 1 Bmx1 Smx1 S5mx1

where the [K] matrix is the standard linear stiffness matrix, {Fj} is the
external forcing function, and {Fy} and {Fy} are pseudo - force vectors
resuiting from matrix cracks and delaminations, respectively. Assembly of the
above element equations into a global set may be accomplished in the standard
way.
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Preliminary results have been obtained with the finite element code for
the [0/90]¢ tapered specimen shown in Fig. 29. The specimen was loaded to
produce the damage state shown in Fig. 30, and the code was utilized to
simulate the response of the specimen. The code produced a prediction of the
axial stiffness 1loss which compares well with the experiment. More
importantly, the computer code produced predictions for the stress components
(as a function of damage) in the 90 degree plies, as shown in Figs. 31 and
32. Since these stresses cannot be practically obtained experimentally, no
comparison is available. However, the close agreement between the predicted
and experimentally observed strains lends support to the contention that the
stress predictions are also believable. Further test cases, such as a plate
with a circular cutout, are now being investigated with the computer code.

2.11 Conclusion

It is now well known that laminated composite structures undergo
substantial microstructural damage which is both load history and stacking
sequence dependent. Because this damage ultimately may lead to component
failure, it is essential to develop a model capable of predicting component
response in the presence of damage in order to design away from failure. If
this can be achieved, then structures can be designed to operate with non-
catastrophic damage (just as metals are allowed to yield) and thus achieve
greater design efficiency.

Toward the goal of achieving such a model, the author has proposed a
particular methodology within the framework of continuum damage mechanics.
This methodology is supported by the following framework: 1) development of a
physically based set of internal state variables representing damage (Section
2.3); 2) construction of a set of stress-strain-damage constitutive equations
(Section 2.3); 3) integration of the model in a lamination scheme which
accounts for interply delamination (Section 2.4); 4) application of the
procedure to calculate "far-field" damage dependent ply stresses (Section
2.8); 5) development of damage evolution laws (Section 2.9); 6) construction
of an analytical procedure for predicting the response of structural
components (Section 2.10); and 7) development of a failure function.

While this author will be the first to admit that the results given
herein do not fulfill all of the steps outlined above, substantial progress
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has been made. Steps 1 through 4 and 6 are complete at this time, and step 5
is well underway. More importantly, the groundwork has been properly laid for
a "mechanistic" approach to step 7. For example, the model is capable of
predicting ply level stresses in the presence of damage regardless of the
laminate stacking sequence and for any load history. So far as this author is
aware, no other currently available analytical technique possesses this
capability. In short, it is believed by this author that the basic features
are now in place for predicting the response of damaged laminated composite
structural components.

The ultimate goal of this research is to develop a model capable of
predicting failure of a component subjected to loads resulting in stress
gradients. Toward this end, the essential ingredients are now available in
the current model for constructing a failure criterion which describes fiber
fracture as a function of matrix cracking and delamination.
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4.2 Thesis Abstracts

ABSTRACT

A Study of Damage Mechanics in Continuous Fiber Composite
Laminates with Matrix Cracking and Internal Delaminations

Scott Eric Groves, B.S., Texas A&M University;
M.S., Virginia Polytechnic Institute
Chairman of Advisory Committee: Dr. David H. Allen

A cumulative damage model for predicting the stiffness loss in cross-ply
graphite/epoxy laminates 1is obtained by applying a thermomechanical
constitutive theory for elastic composites with distributed damage. The model
proceeds from a continuum mechanics and thermodynamics approach wherein the
distributed damage is characterized by a set of second order tensor valued
internal state variables. The internal state variables represent globally
averaged measures of matrix cracking and internal delaminations. The
resulting model represents a set of damage dependent laminate plate
equations. These are developed by modifying the classical Kirchhoff plate
theory. The effect of internal delamination enters the formulation through
modifications of the Kirchhoff displacements. The corresponding internal
state variable is defined utilizing the kinematics of the internal delaminated
region and the divergence theorem. This internal state variable represents
the components of the out-of-plane displacement modes created by the
delamination. A local anisotropic stiffness is then defined to couplie these
out-of-plane displacements with the in-plane forces. The effect of the matrix
cracking enters the formulation through alteration in the individual lamina
constitution. The internal state variable is related to the surface area of
delamination by employing linear elastic fracture mechanics. This leads to a
relation between the strain energy release rate and the internal state
variable. Thus, as long as the strain energy release rate can be defined, the
model is applicable of predicting the response of general laminate plate
behavior. The model is demonstrated by predicting the relative axial
stiffness loss due to internal delamination in cross-ply laminates with very
good results.
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ABSTRACT

Initiation Mechanisms and Fatigue Growth of Internal Delaminations
in Graphite/Epoxy Cross-Ply Laminates. (December (1986)

Ioannis Theodorou Georgiou, B.S., Aerospace Engineering Texas A&M University
Co-Chairmen of Advisory Committee: Dr. C.E. Harris
Dr. D.H. Allen

An experimental investigation has documented the initiation and growth of
internal delaminations in laminated fiber-reinforced composites made of
AS4/3502 graphite/epoxy. Cross-ply laminates of the general type (°n/9°m)s
were subjected to a tension-tension cyclic load at 2.0 Hz and R=0.1 to develop
internal delaminations. Isolation of internal delaminations from other major
matrix fracture phenomena was the main reason for selecting cross-ply
laminates for this study.

The X-ray radiography nondestructive method was used to record the
internal delaminations at specified load cycles. In addition, Scanning
Electron Microscopy was used to examine the damage state in the interior of
the laminates. Also, the residual mechanical properties E.x and Vyx were
measured at the cycles where the damage was recorded.

The experimental results were interpreted by using force and moment
equilibrium conditions and compatibility of deformations. The conditions
leading to the fracture phenomenon of internal delaminations were
delineated. The factors leading to distinct patterns of internal delamination
initiation and growth were identified.
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ABSTRACT

An Investigation of Damage Accumulation in
Graphite/Epoxy Laminates. (August 1985)

Robert Gerald Norvell, B.S., Texas A&M University
Co-Chairmen of Advisory Committee: Dr. David H. Allen
Dr. Rictard A. Schapery

The objective of this investigation has been to identify the mechanisms
of initiation and growth of matrix cracks in graphite/epoxy laminates and to
identify the effect of matrix cracking on material response. An extensive
experimental data base was produced for use in the development of a damage
model and for model verification.

An as yet unreported form of transverse cracking has been observed. Two
distinct forms of transverse cracks were found, each clearly having its own
mechanisms of initiation and growth. Subsequent damage modes associated with
transverse cracks, such as longitudinal splitting and delamination, also
developed separate forms corresponding to the transverse crack variations.
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.ABSTRACT
An Investigation Into the Effects of Damage on the
Stresses in a Composite Laminate. (December 1988)
Eric Walter Nottorf, B. S. Aeronautical and Astronautical Engineering,
Purdue University, M. S. Aerospace Engineering, Texas A & M University.
Co-Chairmen of Advisory Committee: Dr. D. H. Allen and Dr. C. E. Harrris

A general constitutive framework for composite laminates with damage is
reviewed. This constitutive framework is based on continuum damage
mechanics with constraints imposed by thermodynamics.

Factors that effect the ply stresses and thus delamination initiation and
growth in composite laminates are investigated and presented within. It is
postulated that adjacient ply "effective stresses" are crucial in influencing the
initiation and growth of delaminations in composite laminates. In particular,
adjacient ply normal stresses have been used in the determination and
postulated growth of delaminations.

A method for determining the "effective stresses" in the adjacient plies is
presented along with calculated stress changes due to various types of damage.
The specific damage is incorporated into the model by two tensor-valued
internal state variables for both matrix cracking and delaminations,
respectively.

Along with this stress calculation method, a general framework for the
determination of delamination initiation and growth using the concepts of

fracture mechanics and stress states is presented.
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Abstract

A Matrix Crack Damage Accumulation

Model for Laminated Composites

David C. Lo, B.S., Texas A&M University

Directed by: Drs. D.H. Allen and C.E. Harris

A damage accumulation relationship in the framework of Continuum Damage Mechan-
ics is proposed for the growth of matrix cracks in brittle-elastic continuous fiber reinforced
laminated composites. The effects of the matrix cracks are represented by the local volume
average of the diadic product of the crack opening displacement vector and the crack face
normal. The local volume under consideration is assumed to be statistically homogeneous.
The concept of flow potentials are adopted to determine the lamina damage evolution
equations. The stability of the matrix crack growth, when viewed from the level of the
local volume, is assumed in the formulation.

The damage evolution equations are incorporated into a continuum damage model for
laminated composites. This model takes the form of laminate analysis equations modified
by internal state variables. Stacking sequence independence is exhibited by the damage
evolution equations because the local ply response, used in the equations, reflects the global
laminate behavior through averaging over the entire laminate thickness. The model is
then implemented in a laminate analysis computer code. Model predictions are compared
with published experimental data for graphite/epoxy laminates with different stacking
sequences. The ability of the model to account for the effects of adjacent ply constraints
and damage interaction by global averaging is examined. Finally, further developments for

this damage accumulation relationship are discussed.
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ABSTRACT

A Finite Element Model for Laminated Composite Plates
with Matrix Cracks and Delaminations. (December 1988)
Kevin Daniel Buie, B.S., Texas A&M University

Chair of Advisory Committee: Dr. David H. Allen

A finite element model is developed herein for the analysis of
laminated composite plates experiencing microstructural damage in the
forms of matrix cracking and interply delaminations. The idea of
representing the formation of damage within a laminated composite
plate with strain-like internal state variables is utilized to obtain
the weak form of the equilibrium equations. From these equations the
necessary stiffness and force matrices are formulated for the three
node, fifteen degree of freedom triangular element used by the model.
A FORTRAN program capable of predicting the response of symmetric
laminated composite plates, having the same lamina material
properties, to any combination of force and moment loadings is
generated from the finite element model. Finally, the program is
used to examine the effects of matrix cracking and delamination on

the lamina stresses in two example cases.
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ABSTRACT

A continuum mechanics approach is utilized herein to
develop a model for predicting the thermomechanical constitution
of elastic composites subjected to both monotonic and cyclic
fatigue loading. In this model the damage is characterized by a
set of second order tensor valued internal state varjiables
representing locally averaged measureg of specific damage states
such as matrix cracks, fiber-matrix dedbonding, interlaminar
cracking, or any other damage state. Locally averaged history
dependent constitutive equations are posed utilizing constraints
imposed from thermodynamics with internal state variables.

In Part 1 the thermodynamics with internal state
variables is constructed and it is shown that suitable
definitions of the locally averaged field variables will lead to
useful thermodynamic constraints on a local scale containing
statistically homogeneous damage. Based on this result the
Helmholtz free energy is then expanded in a Taylor series
in terms of strain, temperature, and the internal state varjables
to obtain the stress—-strain relation for composites with damage.
In Part II the three dimensional tensor equations developed in
Part I are simplified using material symmetry constraints and are
written in engineering notation. The resulting constitutive
model is then cast into laminate equations and an example problem
is solved and compared to experimental results.

It {s concluded that although the model requires further
development and extensive experimental verification it may be a
useful tool in characterizing the thermomechanical constitutive
behavior of continuous fiber composites with damage.




INTRODUCTION

A model for predicting the effect of microstructural damage
on the constitutive behavior of continuoues fiber~reinforced
laminated composites is presented in this two part paper. In
Part I, the general model {is developed from a theoretical
treatment of damage mechanics using continuum mechanics and
thermodynamic principles. In Part II, the constitutive model is
specialized for the case of matrix crack damage confined to the
90° plies of cross-ply laminates. Predicted values of the
damage-degraded axial modulus of cross~ply laminates with a
varjety of stacking sequences are compared to experimental
values.

While the motivation for the research is to model laminated
composites, the general model formulated in Part I is applicabdble
to a broad class of media. Therefore, the following literature
review discusses the general field of damage mechanics, whereas
developments specifically related to laminated composites are
discussed in more detail in the introduction to Part II.

The research fields of fracture mechanics and damage
mechanics are often related and in some cases contain
significant commonality., For the purpose of the current research
we define fracture mechanics to be that branch of mechanics
wherein a crack i{s treated as a boundary of the body of interest,
whereas damage mechanics is consjidered to be that branch of
mechanics wherein the effects of cracks are included in
constitutive equations rather than in boundary conditions. The
usefulness of damage mechanice is apparent when one considersgs a
body containing numerous microcracks for which an exact analytic
solution is often untenable. Since in many cases internal
cracking is noncatastrophic, it is pragmatic to consider the
locally averaged effect of the cracks on the response of the
body. This approach was first utilized by Kachanov in 1959 [1].
Since that time the field of damage mechanics has grown rapidly
to the current state nf development [2]. However, the
predominant body of research to date has centered on the
application of the method to statistically {sotropic media.

Microcrack damage has been observed in a wide variety of
media, including metals [3], concrete [4], geologic media [5]),
and composites [6~12]). The significance of this damage lies in
the fact that numerous global material properties such as
stiffness, damping and residual strength may be substantially
altered during the life of the component, as shown in Fig. 1
f133.

Attempts to model damage initially were somewhat
phenomenological in nature [1,3). However, considerable research
has shown that this approach can often be justified by
micromechanics [14-18] for inftally isotropic materials [2].
Fracture based concepts have recently been utilized to model
damage development [19-22). Although the first of these studies
[19) contains a general theory which may be applied to fibrous
composites, it has so far only been utilized for quasi-isotropic
random particulate composites such as solid rocket propellant
[20], and as such has not been applied to continuous fiber
composites. The theory in the latter two [21,22] has been




utilized to develop fatigue matrix crack growth laws for
laminated composites. Kachanov’s technique [1l]) has also been
applied to fibrous composites {23) and although promising results
were obtained, the model was utilized in uniaxial form only.

The concept of damage as an internal state variable has been
previously utilized {in continuum mechanics/thermodynamics based
theories for crystalline and/or brittle materials [24-31), as
well as for nonlinear viscoelastic materials [18]. A study has
been made of the effect of vector-valued damage parameters con
various compliance terms [32), and this methodology is currently
undergoing further development {33, 34].

The foregoing discussion indicates that important progress
has been made in characterizing damage in a variety of media.
However, with a few notable exceptions [(16,21-23,25,35-38]),
applications have been made only to infitially isotropic media.
Therefore, it is the contention of these authors that substantial
and continued research is warranted to develop a model of damage
in laminated continuous fiber composites. In this paper an
attempt will be made to utilize many of the concepts embodied in
the previously referenced research efforts co develop a
thermomechanical constitutive model for damage in composites
which is rigorously based in continuum mechanics/thermodynamics
and is generic with regard to material type, load spectrum, and
specimen geometry.

The model will utilize the concept of a local vélume element
with statistically homogeneous damage to construct constitutive
equations relating stress, strain, and damage. Unlike methods
which model the local volume analytically (called
microcmechanics), the current research will model the local
volume element experimentally (called phenomenological). The
model will therefore not be restricted to linear elastic media
with homogeneous elastic properties. Furthermore, the model will
+: applicable to cracks which are oriented and of heterogeneous
sad irregular size and gshape. The effect of the cracks will be
reflected through locally averaged quantities describing the
kinematics of the cracks. The output of the model will be a set
of congtitutive equations which apply on a scale that is small
compared to the boundary value problem of interest. Therefore,
it will be applicable to the analysis of bodies with stress
gradients and heterogeneous damage states.

CHARACTERIZATION OF DAMAGE AS A
SET OF INTERNAL STATE VARIABLFS

Consider an initially unloaded and undamaged composite
structural component, denoted B, ag shown in Fig. 2a, where
undamaged is defined here to mean that the body may be
considered to be continuous (without cracks) on a scale several
orders of magnitude smaller than the smallest external dimension
of the component,. Although cracks may exist in the initial
state, their total surface area is assumed to be small compared
to the external surface area of the component. Under this
assumption the body is assumed to be simply connected and we call
the initial bounding surface the external boundary S. Although




the component §is undamaged, there may exist local heterogeneity
caused by processing and second phase materials including fibers,
matrix tougheners and voids. In addition, the body may be
subjected to some resjidual stress state due to processing, cool
down, etc.

Now suppose that the component is Bubjected to some
traction and/or deformation history, as shown in Fig. 2b. The
specimen will undergo a thermodynamic processe which will in
general be in some measure irreversible. This irreversibility is
introduced by the occurrence of such phenomena as materijial
inelasticity (even in the absence of damage), fracture (both
micro- and macroscale), friction (due to rubbing and/or slapping
of fractured surfaces), temperature flux, and chemical change.
While all of these phenomens can and do cotmonly occur in
composites, in the present research it will be assumed that all
irreversible phenomena of significance occur in small zones near
crack surfaces. Outside these zones, the behavior will be
congidered to be elastic and therefore reversible under constant
temperature conditions. All fracture events will be termed
damage. Due to these fracture events, the body will necessarily
become multiply connected, and all newly created surfaces not
intersecting the external boundary will be termed internal
boundaries. Because of the above assumptions the model may be
limited to polymeric and ceramic matrix composites at
temperatures well below the glass transition temperature T or
melting temperature, where viscoelasticity in matrix materials is
small. Metal matrix composites may have to be excluded due to
complex post-yield behavior of the matrix.

Vhile fracture involves changes in the boundary conditions
governing a complex field problem, it is hypothesized that one
may neglect boundary condition changes caused by creation and
alteration of both internal and external surfaces created during
fracture as long as the regulting damage in the gspecimen is
itatistically homogeneous on a local scale which is small
compared to the scale of the body of interest. However, the total
newly created surface area (which includes internal surfaces) may
be large compared to the original external surface area. Under
the condition of small scale statistical homogeneity all
continuum based conservation laws are assumed to be valid on a
global scale in the sense that all changes in the continuum
problem resulting from internal damage are reflected only through
alterations in constitutive behavior. Typical microstructural
events which may qualify as damage are matrix cracking in lamina,
fiber/matrix debonding, localized interlaminar delamination and
fiber fracture. Large scale changes in the external surface such
ags edge delaminations, however, are treated as boundary effects
which must be reflected in conservation laws via changes in the
external boundary conditions rather than in constitutive
equations [36,39).

THERMODYNAMICS OF MEDIA
WITH DAMAGE

Ve now proceed to construct a8 concise model of ¢the
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composite with damage. To do this, consider once again the
structural component, denoted B in Fig. 2a. The body B is
assumed to be of the scale of some appropriate boundary value
problem of interest. Now consider some local element labelled V

and with external surface faces Sl arbitrarily chosen normal to a
set of Cartesian coordinate axes (xl. Xq, *3)' as shown in Fig.
2¢c. The element V extracted from B and the newly created
surfaces, denoted and with volume V_, are subjected to
appropriate boundary conditions so that the element response is
identical to that when {t {s in B. Furthermore, the volume of the
element is defined to be V,, which includes the volume of any
{initial voids. The scale of VL is chosen so that its dimensions
are small compared to the dimensions of B, but at the same time,
the dimensions of V, are large enough to guarantee statistical
homogeneity of the material heterogeneities and defects in VL
even though the total surface area of defects may be of the sanme
order of magnitude as S1 [40]. Suppose furthermore that {n the
absence of defects or at constant damage state the material
behavior is linearly thermoelastic. Now consider the local volume
element V,., For the case where tractions or displacements are
applied uniformly to the external boundary of VL' the average
stresses and strains in V, will be determinable from the external
boundary tractions or displacements.

Although the damage process actually invelves the conversion
of strain energy to surface energy, the fact that the damage is
reflected in the 1local constitutive equations rather than
boundary conditions suggests that §t be treated as a set of
energy dissipative internal state variables which are not
discernible on the external boundary of the local element.

The following notation is adopted. Quantities without
capitalized subscripts denote pointwise guantities. Those with
subscripts L denote quantities which are averaged over the local
element VL' Finally, the subscript E denotes linear
thermoelastic properties.

Under the conditions described in the previous section
the pointwise Helmholtz free energy per unit volume h of the
undamaged linear elastic medium may be expressed as a second
order expangion in terms of strain ‘iJ and tempersture T as
follows [41]:

heu-~Ts = h(cij,T) =

1 1 2

where u and s are the internal energy and entropy per unit
volume, respectively, and A, Bij' cijkl' D, Ei and F are
material parameters which are independent of "gstrain and
temperature and AT = T-TR. where TR is the reference temperature
at which the strains are zero at 2zero external Jloads. In
addition, we assume here that all motions are associated with

4

_



small deformations. Furthermore, {nertial] effecte and
electromagnetic coupling are assumed to be negligible.

Pointwise conservation laws appropriate to the body are
as follows:

1) conservation of linear momentum

=0 (2)

951,3

where oy is the work conjugate stress tensor to the strain
tensor ‘iJ and body forces are assumed to be negligible;

2) conservation of angular momentum (assuming body moments may
be neglected)

oyy = 94y : (3)
3) balance of energy

where g, are the components of the heat flux vector, and r is the
heat source per unit volume. In addition, dots denote time
differentiation and .jsalasz

4) the second law of thermodynamics

s - F+ (350,520 . (5)
Furthermore,

g % FCuy 5+ uy ) : (6)

where u; are the components of the displacement vector.
Constraints imposed by the second law of thermodynamics will
result in [4]1)]

s = sp = - £ =-D - E ey - FAT (1)
and
-}
°1y = 1y ¢ 3&5." Biy * Cogkaeyy + Ejjar , (8)




where B1 are i{nterpreted as components of residual stresses at
the reference temperature at which AT=0, and [41)

where
Ly H T,J ' (10)

and kiJ is the thermal conductivity tensor.

Thermodynamic Constraints with Local Damage

It is our {intention to construct locally averaged field
equations which are similar in form to the pointwise field
equations discussed above. In performing this averaging process
the pointwigse Helmholtz free energy described in equation (1)
will undergo a natural modification to include the energy
conversion due to crack formation.

Now consider the local element shown in Fig. 2c with
traction boundary conditions on the external sgsurface §,. In
addition, the interior of V, is assumed to be composed entirely
of linear elastic material and cracks (which may include thin
surface layers of damage). Integrating pointwise equations (1)
through (6) over the local volume will result in

_ ] ) 2
hpp = Ap+Bp g8 3%70 i g6 j6Lk1tPLATL*E 58 g 8T +2F 8T 7 , (1)

where AL' BLij' cLijkl' DL' ELij' and FL are locally averaged
material constants. Also,

T : (12)
°Lijy = %Lji ' (13)
and
6




§, - L + (L), 5 2 0 ' (15)
L

where ui. called the effective local internal energy, is given by

,

&L = GEL + GE . (16)

UpyL represents the internal energy of the equivalent uncracked
body, given by

g, = ‘1,1-1 ydv - “,LJ T8y, ds \ (17)

Vi S2

where Tg are called equivalent tractions, representing tractions
in the uncracked body acting along fictitious crack faces, as
described in detail in the appendix, and ui is the mechanical
power output due to cracking, given by

af = - & 5 1S4 as . (18)

~here TE are fictitious tractions applied to the crack faces
which represent the difference between the actual crack face
tractions and Ti' Furthermore, the locally averaged stress is
given by

oLy = 51-; oy 54V : (19)
Vi

and the locally averaged strain {s given by

| 1
51

where n are components of the unit outer normal vector to the
surface Sl. Equations (11) through (15) are identical in form to
equations (1) through (5), respectively. Further details on this
similarity are given in the appendix.




On the basis of this similarfty we now define the locally
averaged Helmholtz free energy [19,39):

’ c c

where it can be seen from definition (17) that hEL is the locally
averaged elastic Helmholtz free energy for which residual damage

is zero.
The similarity between the pointwise and local field

equations leads to the conclusion that

"o = - g-qt , (22)
c
opgy = $BL o= 2L 4 2u : (23)
Lij LiJ LiJ
qLi g - kLiszJ ' (24)
and
BLy = Ty, : (25)
where
VL

Note the similarity between equations (7) through (10) and (22)
through (25), respectively.

Equations (23) will serve as the basis for
thermomechanical stress-strain relations in damaged composites.
All damage will be reflected through the local energy due to
cracking u{. This term will be modelled with internal state
variables characterizing the various damage modes.

escription of the Internal State

In order to describe the internal state, we first
consider the kinematics of a typical point 0 with neighboring
points A and B, as shown in Fig. 3. Before deformation lines 0A




and OB are orthogonal, as shown in (a). After deformation we
imagine that lines joining O°,A’, and B’ are as shown in (b), and
just at the instant that deformation is completed, a crack forms
normal to the plane of AOB through point 0°, as shown in (c).
Furthermore, pofnt 0’ becomes two material points 0’ and 0" on
opposfte crack faces and points A’ and B’ deform further to
pointse A" and B". It {is assumed that all displacements,
including displacement Jjumps across <crack faces, are
infinitesimal, so that strain gages attached at points O, A, and
B record only the deformation A"0°B", However, the actual strain
is associated with A"O"B". Therefore, it is essential to
construct an internal state varjable which will relate these two
strain descriptions. We therefore construct the vectors uc
connecting 0’ and 0" and &€ describing the normal to the crack
face at 0°, as shown in (c). It should be noted that u€ can be
used to construct a pseudo-strain representing the difference in
rotation and extension of lines A"0’B" and A“0"B".

Now recall that the mechanical power output during
cracking is given by equation (18). Ve assume that at any point
in time tl tractions Ti can be applied along the crack faces
which will result in an energy equivalent to that produced by the
damage process:

uf(t;) = - § 5 Tufes : (27)

Sz(tl)

The quantities T, do not necessarily coincide with the terms in
the integrand of (l18) since the process is in some measure
irreversible. However, we define them such that the total
nnergies in equations (18) and (27) are equivalent. For
convenience we will call them crack closure tractions, although
they do not necessarily result in complete crack closure.

Guided by the fact that 0€ and n€ describe the kinematics
of the cracking process at point 0O, we now define the following
second order tensor valued internal state variable:

ufn] ufng uinj

a4 = ufng => [ay] = ugnf ugng usng . (28)
¢c.c .c.C c.C
uzn] u3nz u3n;

The above description has been previously proposed by M.
Kachanov([42]. Substituting the above into (27) and utilizing
Cauchy’s formula gives

uf = - S of jay 4dS ' (29)

<Jr=e
[ nd

5,




where it should be pointed out that integration is performed with

respect to undeformed coordinates.
Note that the components of T
by using simple row multiplication on °ij’

€ can be recovered from (28)

uf = ufnjufnj (no sum on {) . (30)

Similarly, 7€ can be recovered by using column multiplication on

Oij=
n? = ugnjufng/cﬁc)z (no sum on J) . (31)

Therefore, although it would not be necessary to actually perform
the operations described in equations (30) and (31), the normal
and shear modes of crack displacement can be recovered from ay ;-

Note furthermore that ay is generally an asymmetric tensor,
and that a symmetric alterna{ive to equations (28) could not be
utilized to recover normal and shear modes as described in (30)
and (31). As an example, consider the following decomposition of
(28) into symmetric and anti-symmetric components

@13 T 13y * 921 : (32)
where

wygy ® %(ugng + ujn?) ' (33)
and

wygy = §u§n§ - w§nD : (34)
In order for the anti-symmetric tensor wp,;, to be zero, U and A€

must be parallel vectors, implying pure mode I fracture. In this
case W, could be decomposed into a vector (in local
coordinateés), thus resulting in vector-valued internal state
variables. For the case where the cracks in the local volume V
are randomly oriented and of statistically homogeneous shape and
size, the surface integral in equation (29) may be carrfed out
over all cracks. However, {f various groups of cracks in the
local volume VL are distinguished by markedly different crack
normals n¢ or geometries, then {it will be necessary to
distinguish between the damage modes in order to retain the
kinematic features of the damage process. Therefore, define the
locally averaged internal state variable °Cij for the nth damage
mode as followe:

10




= 1 c.¢C 1
aLij g vLI uianS = vL f oinS ' (35)
n n
52 52
where
N
n=1l

and N {s the number of damage modes. For a continuous fiber
laminated composite, the modes might be represented by matrix
cracks, interply delamination, fiber fracture, and fiber-matrix
debond (N=4), For & quasi-isotropic chopped-fiber metal matrix
composite, a single {gotropic damage tensor might suffice for
randomly oriented matrix cracking (N=1).

Therefore, if we define oS, to be the average crack closure
stress for the nth damage mode such that

offialxy =9 f of jay 348 ' (37)
L
52
it follows from equations (29), (35), (36), and (37) that
uf = - af?janij ' (38)

where we have assumed that repeated indeces n imply summation
over the range N. It is clear from the above discussion that the
value of N must be sufficiently large to recover the essential
physice of the damage process. In a mathematical sense, this
implies that, whereas the mapping from ey to al is unique,
the inverse should also be true in an approximate .sense.
However, there is no clearcut definition for the range N which
will lead to an accurate description of the internal damage
state. Note also that both u; and n in equations (35) will be
affected by crack interaction in the local volume.

As an example, consider the case of mode I opening of an
elliptic crack. For this case, equation (35) will result in
dependence of al on the volume of the inclusion. Although
analytic models for linear elastic bodies with cracks result in
response which is dependent on the surface area of cracks only
(15-17}, it should be pointed out that they also require the
average crack diameter. Thig quantity is replaced herein by the
crack opening displacement, which is proportional to the crack

11

e




diameter in a linear elastic body. Therefore, specifying the
crack opening displacement {s equivalent to specifying the crack
diameter.

Now consider equatfon (38) {n further detail. The
kinetic quantitiesai? may be interpreted as generalized
stresses which are energy conjugates to the kinematic strain-like
internal state variables al . .. Ve infer from this that there
exists a constitutive relation between these variables of the
form

cn  _ cn u
oriy = rig‘frxkaToeoiky) ' (39)

which i history dependent via the explicit dependence on the
internal state variables.
Therefore, substituting (39) into (38) will give

t1
uf(ty) = 5 uf(t)dt = ufle;, (), Ti(ty),af () . (40)

It is now proposed that ui be expanded in a Taylor series
which is second order in each of the arguments in equation (40)
as follows:

[«
up

n fa n n n n ng n g
Gisorsy * BisorgsdTe + Tiskatrisoiey * Jijk1®Li3%Ck18TL

ng n g 1.1 n
+ Liik1mn®L15%Lk1% mn * Z2Mi k1mnCLi36Lk1% mn

n n n .n 2 14n¢ n 4
+ Nigk1fLi3oLr18Te * Posori 58T + 200 5k 1mnpqbLi 56LKk1%Lmn®Lpq

ng n g ng n 4 2
+ Ri{jk1mn®Li3%Lk1%LandTL * S{jk1%Ls39Ck18TL

n n n n 2
+ Tiik1mn®Ls5CLk1%Lk28TL + VggkatrsoLx18TL

ng n 4 n n 2
+ Viik1mnopCLiS6Lk1%Lmn®LopdTL * ¥isklmnbLi36LK1%LmndTL

+ x?gklmn‘tij°fk1°fnn°rf + %Y?gklmnsLiJ°2k1°EmnATL
+ z?gklmnpqeLiJch1°Emn°quATf » (41)
where all terms are at least linear in °Eij due to the fact
12




that ui depends explicitly on damage, and ATL! T -TR. Thus,
substituting (11) and (41) into equations (23) an& neglecting
higher order terms yields:

n n
Opsg = Brygg v Epgg8Tp + Crogratixy * Tijx19r) (42)
Restricting the damage to small quantities constitutes a
sufficient but not a necessary condition for dropping the higher
order ternms. Equations (42) may be written in the following
alternate form for {sothermal conditions

9ss = 9Liy * Ciggk1tLra (43
where

ofis = BLyy ' (o
is the residual stress tensor; and

Clisk1x1 T CLiskifixy * ILs5k1°Ck1 ‘ ' (45)
defines the effective modulus tensor C/ for any damage state.

Note that although equatjions (43) are similar to Kachanov’s model
[1]), the stiffness reduction {is a first order effect of damage.
Note also that the inclusion of higher order terms will result in
damage dependent residual and thermal stregses, as well as
nonlinear stiffness loss as a function of damage.

Equations (42) are the completed description of the
stress-strain relationship. Note that these equations reduce to
the standard linear thermoelastic equations in the absence of
damage (021J=0L

Damage Growth Laws
The model is completed with the construction of the

damage growth laws, which may be described in the following
differential equation form:

n = N ) u
apgy = Agle e Troeryy) . (46)

or equivalently, when Q?J are single valued functions of time,

13




t)

= n M
aflyg(t)) = J 8 (e (8, T (), af, (t))dt . (47)

Although the above equations are called "growth” laws they
have the more general capability to model such phenomena as
healing.

The precise nature of equations (47) is determinable only
through a concise experimental program coupled with an
understanding of the micromechanics of the medjium. Indeed, these
growth laws constitute the single most complex link in the model
development.

In this section an example of a first generation growth
law will be constructed for predicting damage up to the CDS in
continuous fiber composites. Experimental evidence suggests that
matrix cracks dominate the first phase of damage development in
laminated composites {9-11). Guided by thise observation1 a
s8ingle damage tensor is consfidered in this section: QL
representing matrix cracking.

In order to completely define equations (47), it is
necessgsary to construct indicators of both the magnitude and
direction of the damage tensor,. In this first generation model
it 18 assumed that the direction of the damage tersor is known a
priori and does not vary as the damage state changes.
Specifically, in a typical laminate, it is assumed that, for this
simple example, in accordance with equation (35), the locally
averaged resultants of UC and nC are norme:' to the fiber
direction in each ply, as shown in Fig. 4. Thus, for example, in
1 0° ply ar22 * 0, and all other components are zerc, whereas in
1 90° p1ly, a ¢+ 0, and all other components are zero (in
global coordinates). In Part II a somewhat more general case of
the damage state for matrix cracking will be considered.

Under the above assumptions, the magnitude of the damage
tensor is the sole repository for history dependence in each ply.
Experimental evidence indicates that for matrix cracking in
randomly criented particulate composites [43) and matrix cracks
in fibrous composites [21,22] the growth of damage surface area
is related to the energy release rate G by

g_az - Gn ’ (48)

where 52 represents crack area, N represgents the number of cycles
in a fatigue test, and n is some materjal parameter. Guided by
these results, a similar law is constructed here. Equation (48)
may be rewritten in the following form:

- n.dN
482 = ke ¢ . (49)
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so that it follows that
1 dol dS,_d ! dN
- . ~ac . ne.
°1227d5L 22 qr2=gEl 227 K0 gy - (30)

Assuming that the energy release rate is essentially mode
I and therefore depends on the maximum normal strain, the damage
growth law for matrix cracking {s thus hypothesized to be of the
form

€ €
. n nmin, 1 . de
Q@97 = k (-:—f———-) an if €nmin < €n , and
L22
.1 *
a2 = kpe, if €pmin 2 €p ' (51)

where ¢_ is the local normal strain component which is normal to
the fibers. Furthermore, €hmin is the value of €n at which
matrix cracking initiates. kl' kz, and n are experimentally
determined material parameters which may depend on the initial
damage state or on history dependent damage other than matrix
cracks. The use of €, Presupposes that the fracture mode is
predominantly mode I {n nature, which may not be the case in gome
complex layups. In these casesg, mode I]I and mode III terms may
b? required. Note that all components of a are zero except
e122 » which is8 nonzero in the local ply coordinate system
wherein the fibers are aligned parallel to the local x, axis.

Experimental evidence [44)] indicates that in crossply
iaminates with multiple adjacent crossplies {n sequence, it {s
not uncommon to observe matrix cracks which are curved rather
than normal to the plane of the ply. For these cases it is
necessary to carry components of e 3 in both the X9 and X3
coordinate directions. Although it is hypothesized that these
components may perhaps be determinable from the orientation of
the maximum normal strain, [ this issue is under further
investigation by the authores.

Equationg (51) complete the description of the damage
model for the case of matrix cracking. Integration of these
equations in time will lead to current values of the damage
tensor which is {input to congtitutive equations (42). Fig. 5
shows a typical growth history for a specimen subjected to
monotonically increasing deformation u(L). It should be pointed
out, however, that these equations may be extremely nonlinear and
as such must in some cases be integrated numerically with stiff
integration schemes [45].
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CONCLUSION

Stress-strain relations have been developed herein which
account for various forms of damage in continuous fiber
composites. Furthermore, a damage growth law has been proposed
for matrix cracking in fibrous composites. The model developed
herein is thus a complete description necessary to characterize
the thermomechanical constitution of a fibrous composite with
matrix cracks (excluding failure).

The actual use of this model is complicated by the
requirement for numerous experimentally determined quantities, as
well as the necessity to determine locally based observable state
variables by anslytic methods. The construction of these
parameters constitutes an entire separate research effort which
is considered in Part II.

Finally, it should be pointed out that although an
internal state variable growth law has been proposed herein only
for matrix cracks, the model is in principle applicable to more
complex damage stateg in laminated composites, and research s
underway to consider other damage modes [45].
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APPENDIX

Consider a local volume element with some damage state,
where the crack faces are defined as traction free surfaces, as
shown in Fig. A1 (al). For convenience we show only one crack,
although in actuality the damage must be statistically
homogeneous 1in VL' Now replace the actual cracks with fictitious
cracks which are described by the bounding surface between
elastic and inelastic response near cracks, as shown in (a2). We
define this surface to be 82. In order to insure that the total
mechanical states in the two systems are identical, the
fictitious case must include tractions labelled Ti on S,.

Now suppose that VL is subjected to boundary tractions on
Sy in the undamaged state as shown in (b1). We define an
equivalent elastic problem in which the s%rface S described in
(a2) is cut from VL and elastic tractions T are applied on S, so
that the total mechanical states of systems (b1) and (b2) are
equivalent.

The adctual system of interest {s described in (a1l).
However, for pragmatic reasons we wish to replace the actual
system with a fictitious system with equivalent mechanical state.
To do this, we first replace (al) with (a2), which by definition
has equivalent mechanical state. Next, we define a system
equivalent to (a2), such that :

c =t oF o ¢E _ F . ¢ E
TS T TS => T T{ + Ty ' (A?)

as shown in (c). Integrating the balance of energy (4) over
the local volume and dividing through by the local volume results
in

3 [ dav - § oy 5€;4av } ay,jav = Vo rav . (a2)
L L L ’ L ‘
VL VL v VL
Now consider the second term in equation (A2) Recall

that since °1J is a symmetric tensor

opgesy = BoyyCig, gely, 1) = opyiy g . (43)

Thus, assuming that the stresses are negligibdble in Vc' the volume
enclosed by S,, using the divergence theorem and substituting
Cauchy's formufa gives




Vi Vi-Ve S S2
. l E. 1 c:
L L L
S S2 S2

where n, are the components of the unit outer normal vector to¢
the surEace S =S8y + S,. Now define

af -4 /rgaias v (&5)
L

Sz

which is the effective specific mechanical power output of the
continuum due to the c¢rack surface tractions. This term contains
both the mechanical power due to crack extension as well as the
mechanical power due to apparent stiffness loss caused by
existing cracks. For the special case of a reversible process
this is the time rate of change of surface energy release per
unit local volume due to cracking in VL' Furthermore, define

iy ° %Lﬁ(uinjmjn )ds O (AB)
Sy
and
51 VL

Therefore, for the case of either spacially uniform surface
tractions or displacements wh1ch are linear in coordinates on 31
one readily obtains

oLijfLiy * %L /°1j‘31“3°3 - \lrL fTiﬁidS . (a8)
S 5

Although it will be assumed in the remainder of this paper that
the above conditions are satisfied, they need only be
approximately true {if VL is statistically homogeneous. Thus,




equation (Al4) becomes
1 t = - 1 E- - &C
VLﬁijeijdv oLijfLiy * vL/TiuidS up . (A9)

Define also

= 1
g,y ¢ VL/%“J“S » (a10)
Sy
and
ry = ‘1, [rdv . (A1)
L o
Vi

Now define

i [ﬁav -3 /’r"fﬁids . (A12)
L L -

vy .32

UEL

which can be seen from Fig. A1 (b) to be the equivalent internal
“nergy rate that would be produced in the body without cracks.
Nnote that u L is not path dependent since it represents elastic
response. Eubstituting equations (A4), (A5),(A9), (A10), (A1),
and (A12) into equation (A2) yields the following 1locally
averaged balance of energy:

gy * Uf - OpgsfLgy * ALy, < L » (A13)

We now define the effective internal energy W:(which may be path
dependent) such that

Substitution of (A14) into (A13) results in

Ul - ogyfLgy * ALy, T TL » (A15)




which can be seen to be equivalent in form to energy balance law
(4).

’ In order to construct a simjilar statement for entropy
production inequality (5), first multiply through by T and then

integrate over the local volume VL and divide by this quantity to
obtain

%LﬁTdV - %L/;-av + ‘I,L'/}(qjxr).Jav >0 . (A16)

v vy Vi

T = ¢ frdv . (A7)
L .

and

1}
-

SL = -H_—v—-férdv . (A18)
L'L
v

so that substitution of definitions (A11). (A17) and (A18) into
(A16) will result in : )

ST, - rp + % fT(qJ/T)'jdV >0 . (A19)
L .
Vy

Now note that the last term in (A19) may be written as follows
using the product rule:

\I,L/‘I'(QJ/T)'JdV - },L qy, 44V - %Lﬁqjgj/r)cv . (A20)
'N ' Vi

Define now

TL,j = %Lf'rnjas . (A21)
S

’



this result into (A19) to obtain

r .
S - qHe (=) > 5 50
L

where

Vi

oLyi,y = 0
angular momentum may also be obtained

°Lij T OLji

respectively, in the main text.

Thus, for the case when T is a linear function of coordinates in
V,, definitions (A10) and (A21) may be substituted into (A20) and

$o T (/T V) J[(ngJ/T)dV - (1/18v2) J(qjdv © % j[gjdv . (A23)
. . L .
VL VL

éc can be shown to be strictly nonnegative with the assumption
that T is everywhere nonnegative, along with equation (9).

We now assume that the local volume is small enough
compared to B that the standard procedure may be utilized to
obtain the linear conservation of momentum equations [40 ]

similar to pointwise equations (2), and the conservation of

similar to equations (3). Thus, it is assumed that no body
moments are introduced via material inhomogeneity or
sources. This assumption must be relaxed when the model
utilized for interply delamination, since in this case the local
volume element goes through the entire laminate thickness.
Equations (A24), (Aa25), (A15), (A22), (A14), (A18),
(A7), and (A6) are rewritten as ‘equations (12) through (20),
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ABSTRACT

A continuum mechanice approach is utilized herein to
develop a model for predicting the thermomechanical constitution
of initially elastic composites subjected to both monotonic and
cyclic fatigue loading. In this mode)l the damage is
characterized by a set of second order tensor valued internal
state variables representing locally averaged measures of
specific damage states such as matrix cracke, fiber-matrix
debonding, interlaminar cracking, or any other damage state.
Locally averaged history dependent constitutive equations are
constructed utilizing constraints imposed from thermodynamics
with internal state variables. In Part I the thermodynamics with
internal state variables was constructed and it was shown that
suitable definitions of the locally averaged field variables 1led
to useful thermodynamic congtraints on a local scale containing
statistically homogeneous damage. Based on this result the
Helmholtz free energy was then expanded in a Taylor serjies in
terms of strain, temperature, and the internal state variables to
obtain the stress-strain relation for composites with damage.
In Part II, the three dimensional tensor equations from Part 1
[1) are simplified using symmetry constraints. After introducing
engineering notation and expressing the constitutive equations in
the standard laminate coordinate system, a specialized
congstitutive model is developed for the case of matrix cracks
only. The potential of the model to predict degradation of
effective stiffness components is demonstrated by solving the
problem of transverse matrix cracks in the 90° layer of several
crossply laminates.

To solve the example problems, the undamaged moduli are
determined from experimental data. The internal state variable
for matrix cracking is then related to the strain energy release
rate due to cracking by wutilizing linear elastic fracture




mechanics. These values are then utilized as input to a modified
laminate analysis scheme to predict effective stiffnesses in a
variety of crossply laminates. The values of effective (damage
degraded) stiffnesses predicted by the constitutive model are in
agreement with experimental results. The agreement obtained in
these example problems, while limited to transverse matrix cracks
only, demonstrates the potential of the constitutive model to
predict degraded stiffnesses.




INTRODUCTION

In Part I it was hypothesized that damage can be modeled *vy
a set of second order tensor valued internal state variables
(ISV’s) which represent locally averaged measures of cracking on
a scale assumed to be small compared to the boundary value
problem of interest. Continuum mechanics []) was then utilized
to construct stress-strain relations in which all components of
the degraded modulus tensor can be determined for & given damage
state. The intent of Part 1] ie to apply this damage model to
the analysis of continuous fiber-reinforced laminated composites.
The current paper seeks only to predict axjial stiffness as a
function of a known damage state. It therefore represents an
application only of the stress-strain relations. The all-
important ISV growth laws are the subject of ongoing research.
Furthermore, as a long range research goal, it is hoped that the
characterization of the ISV’s for damage will lead to the
development of a model for structural failure in terms of the
internal state within any local volume in a typical structural
component.

Considerable experimental research has been performed in the
last decade detailing the growth of damage in laminated
composites under both monotonic and cyclic loading conditions [2-
81. The significance of this damage lies in the fact that
numerous global material properties such as stiffness, damping
and residual strength may be substantially altered during the
life of the component. It has been found that the first phase of
fatigue is typified by development of a characteristic damage
state (CDS) {9]) which is composed primarily of matrix cracking in
off-axis plies. During the second phase of damage development
the CDS contributes to fiber-matrix debonding, delamination, and
fiber microbuckling. These phenomena in turn contribute to a
tertiary damage phase in which edge delamination and fiber
fracture lead to ultimate failure of the specimen [6].

Analytical mecdeling of sgstiffness loss in laminated
composites with damage appears to be only recently studied. The
earliest attempts fall under the general heading of ply discount
methods, in which various phenomenological models have been
developed to discount ply properties in the presence of damage
[10~-12)}. Axial stiffness reduction and stress dietribution in
the CDS have also been predicted using a one-dimensional shear
lag concept [5]. Kachanov’s modulus reduction technique [13] has
also been applied to fibrous composites [l14) and although
promising results were obtained, the model was utilized in
uniaxial form only.

Similarly, very 1little research has been performed to
develop ISV growth laws modelling the evolution of damage in
laminated composites as a function of load history. Although
extended forms of Miner’s rule [15) have been proposed for life
prediction [16,17), they are based on simpljfied microphysical
models at this time.

A complex interactive experiment and analysis model (called
a mechanistic model) has been proposed [18) for prediction of
life of damaged composites, The mechanistic model appears to
require numerous experimental results for each geometric layup in




order to determine which damage mode results in failure.

Perhaps the most significant attempts to model damage §in
laminated composites are contained in references 19-23. The
first two of these use analytical methods to model & medium with
oriented cracks and thus fall under the heading of microphysical
techniques. The first of these two uses varjational principles
to obtain effective moduli for linear elastic cracked plies (19)].
The second uses the gself-consistent scheme to predict stiffness
loss in a Bingle ply a8 a function of surface area of matrix
cracks [20]. It has not to these authors knowledge been applied
to general laminate analysis. Furthermore, to our knowledge no
analytic microphysical technique has yet been developed for
predicting stiffness loss in laminated composites when damage
modes other than matrix cracking occur.

As stated in Part I, the current model i phenomenological
in the sense that the local volume element is modelled
experimentally. Another phenomenological model has been proposed
in the literature for laminated composites [21-23), and this
model has significantly influenced the current model development.
Nevertheless, there exist significant differences between these
two phenomenological models. The most significant difference is
that the damage ISV in Talreja’s model is a vector, whereas that
proposed herein is a second order tensor. Support for the second
order tensorial nature of the ISV has been supplied in reference
24. Recently, Talreja has modified his ISV description somewhat
to include second order tensors [25]. Furthermore, the vector-
valued model appears at this time to be laminate specific.
Although both models have been applied to the combined modes of
matrix cracking and internal delamination [26,27]), these attempts
must be considered embryonic at this time. It is our contention
that both models warrant further study, especially in anisotropic
media.

The literature review cited above and in Part I indicates

“at although substantial progress has been made in damage
modelling, the principal results to date deal only with isotropic
homogeneous media. It is the contention of these authors that
the material heterogeneity and layered orthotropy encountered in
laminated composites requires that a more advanced model be
developed for these media. The tensorial nature of the damage
ISV's proposed in Part I may provide this capability.

In this paper the general constitutive model developed in
Part I i{s specialized for the single damage mode of matrix
cracking in the 90° plies of crossply laminates. Properties of a
single lamina with known damage are utilized to specify the value
of the ISV as a function of damage state. This expression for
the matrix crack ISV is then used to predict the damage-degraded
axial stiffness of crossply laminates with a variety of stacking
gsequences. The validity of the constitutive model formulation is
verified by comparing the predicted values of stiffness to
experimentally measured values for other stacking sequences, thus
demonstrating that at least for this case the model 1is
independent of stacking sequence.
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SIMPLIFICATION OF THE MODEL

Ve now consider the stregs-gstrain relation described in
equations (42) through (45) of Part I (see Appendix A). For the
examples to be considered herein, it is assumed that all residual
stress components are zero (°Lij=0)' and that there are no
temperature changes (ATL=0L

Reduction to Single-Index Notation

By incorporating the symmetry of the stress and strain
tensors, the quadratic dependence of the Helmholtz free energy on
strain, and the Voigt single index notation [28], the
constitutive equations reduce to (see Appendix A)

= n .n

Although we have dropped the subscript L, all quantities in
equations (]) represent locally averaged measures. The
subscripts { and j range from 1l to 6, the subscript k ranges from
l] to 9, and the superscript n ranges from 1 to N, the number of
damage modes.

At this point, further reductions can be made to the number
of unknown constants in equations (1) only by s8specifying the
material symmetry and specific damage modes of interest.

Material Symmetry Constraints

Material symmetries may now be utilized to further gsimplify
ine congtitutive equations. The material in question is assumed
to be initially transversely isotropic in the undamaged state on
the local scale, where the rlane of isotropy is the Xg = X5 Plane
shown in Fig. 1. In the undamaged state the modulus tensor Cij
is given by [29]

p-
Cij;1 €12 ¢, 0 0 0

clz C23 sz 0 0 0
[cl = o (2)

where C4‘=2(C22-C23).




It is assumed that the crack induces orthotropy in three
planes: the plane of the crack, the plane in which the crack
opening displacement u® and crack normal nC lie, and a third
plane which is_orthogonal to the first two. Therefore, the
damage tensor I.k is an orthotropic tensor containing 15 unknown
constants in the coordinates described by the crack geometry (see
Appendix B), given by

g

141 4)

11, 11, I]30 0 0 0 0 ©
1 1141

13, 13,13, 0 0 o o o o

1 1 1
I3y I3, I35 0 0 0 0 0 0

(1l) = . (3)

Thus, the complete constitutive equations (l) (assuming the
damage growth law is known) require the determination of 5
independent material constants for the undamaged modulus tensgor
CLi , and 15 independent constants for the damage tensor, Iik’
It should be noted, however, that the planes of these symmetries
will not coincide unless the crack displacement G€ is oriented
parallel to the X3+ X,y OF X3 axis in ply coordinates.

Application to Matrix Cracking in Continuous Fiber Laminates

As discussed in the introduction, the capability of the
constitutive model will be demonstrated by considering the case
of matrix cracking in continuous fiber laminated composites. An
example of this damage state igs shown schematically in Fig. 2.
In order to apply the proposed constitutive model to this system
we first examine the response of a single ply subjected to
transverse matrix cracking, as previously shown in Fig. 1.
Assuming that the crack geometry {s symmetric about normals to
each of the ply coordinatesgs, the internal sgstate variable
associated with matrix cracking is represented in ply coordinates
by

adl = (0 a) 0 0 ol 0 0 o} 0 (&)

where the single subscripted notation is defined by equations
(7a). This implies that the crack normal € in a single ply is
parallel to the local S coordinate. Furthermore, the crack-




opening displacement, uc, may contain three components.

Note that a second order tensor representation of the
internal state variable may be insufficient {f the crack
displacement U® or normal R° rotates during the load history. In
this case a higher order tensor may be required {30]. However,
since the crack is matrix dominated and constrained by fibers,
time dependent rotation is assumed to be negligible and the
second order tensorial representation is considered adequate in
the current model. Recent experi{imental evidence [31)] indicates
that cracks do indeed change planes sometimes in multi-ply
laminates with several adjacent crossplies at the sanme
orientation. However, the crack plane is essentially gstraight in
each ply, the level at which the local volume is constructed for
matrix cracks.

For the single damage mode of matrix cracking described in
Fig. 2, equations (1) reduce to

= 1 1., 1,..1 1
°i’cij°j+112°2*li5°5*118°8 . (%)

For relatively thin laminates it is useful to apply the
conditions of generalized plane stress where the out-of-plane
shear stresses o and o are neglected. Applying these
conditions to equations (5), imposing the symmetry constraints
described in equations (2) and (3), and using matrix notation
results in

oy [C)) €12 €32 0 £)
o C c C 0 €
2 12 €22 €23 2
= + [111(aly .(6)
o3 Cy2 €23 C33 0 €3
06 LO 0 0 C66_ 56
where
ol 1 ~
o 11,0 0o o o o0 o 0
]
1 o 13,0 o o o o 0o o
fr*y = ) . N
o 1,0 o o o o o o
1
o 0o 0o o 0o o o 1{go0]

Note that the fifth column of the coefficient matrix in equations
(5) is zero due to the fact that ag does not contribute to the
in-plane stresses in the generalized plane stress reduction.
Furthermore,note that 112.152 and I%z are the coefficients of




the effect of loss of stiffness on the normal stresses o1+ O, and
93, respectively. Finally, note that 168 is the coeffjcient
determining the influence of stiffness loss on the in-plane shear
stress o,. It is apparent from the above equations that for
generalized plane stress conditions there are ten unknown
material constants to be determined for the case of matrix
cracking.

Determination of the 1 Matrix

Theoretically it is possible to determine the I matrix
directly from experimental data. This may be accomplished by
subjecting test coupons to prescribed deformation histories,
removing the deformations, and nondestructively evaluating the
damage state. The residual stresses will determine the I matrix.
However, in graphite/epoxy laminates this procedure breaks down
due to the fact that although the crack surfaces may be
determined nondestructively using x-rays and edge replicas, the
crack opening displacements cannot be accurately determined
experimentally. Therefore, an alternative approach is used
herein to evaluate the I matrix.

As described in Appendix C, for the case considered in this
paper, at least to a first approximation, it can be shown that

1 1
I12=-C12 122=-C2;

1 1 _
132=-C23 Teg="Ces - (&)

Therefore, the number of unknown material constants is
reduced to a total of six for the case considered herein.

raminate Eguations

In order to utilize single lamina equations to characterize
the response of multilayered laminates, it is necessary ¢to
globally average the local ply constitutive equations. This is
accomplished herein by imposing the Kirchhoff hypothesis for thin
plates [31]. However, higher order plate or shell theories could
be utilized also. Generalized plane strain conditions are
imposed rather than plane strain because this i consistent with
the stress state in equations (6) (A detailed description of the
global averaging is given in Appendix D). The resulting
equations are as follows:

(N)=[A)(e®}+{(D) , (9
or

(e®)=ra~11¢(N)-(D}) . (10)




where
n —
A = I (¢ ) ty , (11)
ij] k=1 i’k
and
n — -—
(p) = I t, (1}, (), . a
k=1

[Il)k and (al]k are in laminate coordinates as defined in
Appendix E, and {(€°) contains the laminate midplane strains.
Furthermore, k specifies the ply and tk is the ply thickness.
For convenience, we have assumed that no moments are produced by
the damage (in the absence of curvature), which is assumed to
hold for symmetric laminates.

In order to determine the effective stiffness for any damage
state, we evaluate the rate of change of {N)}) with respect to the
midsurface strains (e°) during unloading, that is,

n 9
’ - o _ T g o
Sim = aNi/aej = Aij+kz.1 12.1 tk (Iij)k (301/35m)k ’ (13)

where S{ ig defined to be the effective stiffness. Experimental
: rk on graphite/epoxy laminates has shown that 5'11 is very
.2arly a constant during unloading, implying that, at least as a
first approximation for crossply laminates,

(aZl/asg)k * constant k=1l,...,n . (14)

THE INTERNAL STATE VARIABLE FOR MATRIX CRACK DAMAGE

Equation (41) in Part I [l1) gave the second order Taylor
series expansion of the local energy per unit volume due to
cracking, uf. in terms of strain, IREL temperature, AT, and the
internal state variable (ISV), °Bi . gor demonstration purposes,
the predictions of this paper aré being confined to symmetric
crogs~ply laminates loaded in uniaxial tension with matrix cracks
extending straight through the 90° plies. For this case, Q is
the only component of the ISV of interest and is defined (in the
ply coordinate system) as




ad= 1 fuzas . (15)
v

s

L5,

where u, is the crack-opening displacement, VL is the local
element volume and S is the surface area of matrix cracks.
Furthermore, we will congsider only the case of load-up in the
fixed grip mode where matrix crack extension occurs at constant
strain. Therefore, if the higher order terms in the Taylor
series expansion are neglected, the local energy due to cracking
reduces to

c_ 1 1
uL-(A+122C2)°2 ' (16)

where A is a constant. iince equation (16) applies to load-up in
the fixed grip mode, a can be related to the strain energy

release rate, G_, for matrix cracking by noting that ui is
related to Gm as follows:
. Sz(t)
uL(t)= -1 GmdS , (17)
Vi %

where it is assumed that the initial matrix crack surface area is
zero and Sz(t) is the surface area at time ¢t. If we make the
assumption that the energy stored due to residual damage is
negligible, then the constant A in equation (16) is zero, and
equating (l16) and (17) yields

§,(t)
1 1 _
1225202 = -_1 medS ’ (18)
Vi Y

for stable crack growth. In order to properly account for crack
interaction an expresgion for Gm will be determined
experimentally.

The strain energy release rate due to matrix cracking may be
defined as

6. = -~ 2VU . (19)

where S denotes matrix crack surface area and U {8 the strain
energy of the laminate.

As a first approximation we will assume that all the strain
energy released during matrix crack formation occurs in the 90°
layer containing the cracks. The strain energy in a 900 j,yer ;g




defined by
v = ) B, €2 (20)
2 “22 %2 '

for a uniform applied strain, ¢4, in an elastic material.
Assuming the applied strain to be constant for the fixed grip
condition, substituting (20) into (19) results in

S | 2 3E
as

This implies that the effective modulus of the 90° layer changes
due to matrix crack formation. It is noted that Equation (21) is
eimilar to the expression for strain energy release rate written
in terms of test specimen compliance.

The rule of mixtures yields the following expression for the
loading direction modulus of a cross-ply laminate:

E. = PEjy + aE5, .
X
P+q

(22)

where p ig the number of 0° plies and q is the number of 90°
plies. Assuming that matrix cracks are confined to the 90°
plies,

3E, - a4 3E,, .23
85 P+q s

Substituting (23) into (21) gives

- 1 2 +q oE
G, = -7V €5 P x . (24)
q 39S

If the right hand side of equation (24) is determined
experimentally from a laminate that has a 90° layer that is one
ply thick, the resulting strain energy release rate can be
utilized for other layups by observing that the strain energy
release rate for a ply in a layer that is n plies thick is given
by (See Appendix F.)

(64); = '%“ Vo ‘% (213) asx] , (25)
q 3S

l ply layer




where V, is the volume of a single ply. Equation (25) can now be
substituted into equation (18) to obtain the expression for the
I5V of a single 90° ply for matrix crack extension during load-
up. The resulting equation ise

S,(t)

a% = %‘2 n(p+q) J x ds . (26)
I22 q

The integral term in equation (26) can be evaluated as follows:

Sz(t) Exl
oE =
X dS = dEx = Exl' Exo s (27)
3s
0 Exo
where E is the undamaged elastic modulus and E ie the

degraded modulus corresponding to damage state S (tlL
Substituting (27) into (26) and rearranging, the ISV for load-up
is expressed as

ajf = §e; nepra) Exa fEar |, ' . (28)
load-up Sz(tl)

at Sz(tl)

Although it is possible for matrix crack surface area to increase
during unloading, in the current development this iffect is
assumed to be negligible. Therefore, on unloading a3 depends
only on the crack-closure displacement, uj in equation (15). and
would go to zero on complete crack closure. Assuming that the
crack-closure displacement is linear with strain and the matrix
crack surface area is constant, equation (15) can be rewritten as

= Cc¢ y (29)
unloading

where ¢ is a constant of proportionality.

The constants in eguations (28) and (29) must be determined
from experimental data. Considering a tensile test with a load
and unloading cycle, at the instant of load reversal the
expressions for the ISV for load-up and unloading must be equal.
Therefore, setting equation (28) equal to (29) and rearranging,
gives the following relationship
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1 E E
c| = an(p+q) 32 ( x11 4 ) . (30)
a 122 \Exo

It should be noted that all matrix cracking information is
contained in the term ExI/Exo' Since equation (30) applies only
to a single 90° piy, E wag determined from the experimental
results of the [0/90/0]' laminate. The following expression was
obtained from a least squares curve fit to the experimental
values of Exllixo versus 52:

- . : 2
Exy/Exo = 0.9969-0.061607"S,(t,)+0.046230°S,(t;) . (3D

Recalling egquation (13), it is seen that the effective
stiffness of a laminate can be obtained by specifying 302/352.
On unloading this is given by equation (29) to be

305/352 =c . (32)

Therefore, equations (30) and (31) are used with laminate
equations (13) to predict the effective stiffness of any laminate.

MODEL COMPARISON TO EXPERIMENTAL RESULTS

The model hags been utilized to predict the damage dependent
-, .od stiffness of several crossply laminates. This has been
.-aowplished dby utilizing the laminate stiffness equations (13),
in conjunction with the damage evaluation procedure described in
the previous section. The reduced gstiffnesses predicted by the
model have been compared to experimental results obtained from
graphite/epoxy coupons composed of Hercules AS4/3502.

The couponsg were obtained from laminates fabricated from
prepreg tape using a hot press technique in the Mechanics and
Materials Center at Texas A&M University. The laminates were
cured according to the procedure recommended by the prepreg tape
vendor. Quasi-static tensile tests were conducted on an Instron
1128 screw driven uniaxial testing machine. Matrix crack damage
states were evaluated by x-ray radiography and edge replication.
Further details of these procedures are contained in reference
[al). Initial undamaged lamina properties are given in Table 1.
These properties were obtained experimentally from [0]8. [90]8
and 2[45] g laminates and are typical for this material system.
As discussed in the previous gsection, the strain energy release
rate as a function of surface area was obtained from [0.90,0]s
control coupons.

The experimental values of normalized axial stiffness versus
matrix crack surface area per 90° ply are shown in Fig. 3. For
each laminate, test coupons were cuasi-statically loaded in an
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incremental fashion to the matrix crack saturation damage state.
At each load step, the matrix crack damage state was documented
and the axial modulus was measured by unloading and reloading the
coupon., As would be suggested by ply disount theory, the axial
stiffness loss increases with increasing number of 90° plies.
Also, as would be predicted by shear lag analysis, the number of
cracke per inch at the saturation damage state decreases with
increasing 90° layer thickness.

Values of effective stiffness for each cross-ply laminate
were predicted by the constjtutive model using equations
(30), (31), and (l13) and the experimentally determined values of
matrix crack surface area. Figure 4 presents a comparison of the
model predictions to the experimental results for the [0,90.0]5
laminate. The excellent agreement between theory and experiment
for this laminate was used to characterize the strain energy
release rate as a function of matrix crack surface area. Figures
5, 6, and 7 present the comparison between the model predictions
and the experimental results for the [0,90]9. [0'902Js' and
[0.903]8 laminates, respectively. As can be seen, the model
predictions are in close agreement with the experimental results.
The results are quite encouraging given the relatively small
stiffness losses of the [0.90.0]B and [0,90]s laminates relative
to the larger losses experienced by the [0.902]s and [0.903]s
laminates.

SUMMARY AND CONCLUSIONS

A model for predicting the stiffness loss in laminated
composites as a function of microstructural damage has been

proposed in this two part paper. In part 1 the general
theoretical framework was constructed for elastic composites with
d.-va1ze,. In part Il the model has been specialized for the case

matrix cracks in crossply laminates. In this process the

following key developments have been reported:

1) material symmetry constraints have been imposed on the
damage constant tensor Ii k1t

2) the damage tensor °ij has been reduced for the case of
plane stress:

3) an approximate procedure hasgs been proposed for obtaining
the damage constant tensor;:

4) damage dependent laminate equations have been
constructed: and

5) the internal state for any crossply layup has been found
to be derivable from energy release rates experimentally obtained
from a single layup.

The model has been demonstrated to be accurate in predicting
the damage dependent reduced stiffness of several graphite/epoxy
crossply laminates with matrix cracks. Vhile a number of
simplifying assumptions were necessary for ¢this model
demonstration, most of these asgsumptions are the same as are
typically made by classical lamination theory and do not
represent a restriction or limjtation to the general
applicability of the model. However, the development herein is
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currently limited to cross-ply laminates with symmetric damage
states. The authors are addressing this limjtation by developing
damage dependent laminate equations which account for the
curvature produced by nonsymmetric damage and the resulting
coupling between extension and bending [ 27]. Finally, the
approach described herein depends on the damage state being
determined experimentally. This restriction is being addressed
by developing damage growth laws which would allow the ISV, and
hence the damage state, to be predicted as a function of the
loading history of the coupon or structural component.

Current and future development of the model will deal with
the following issues:

1) application of the model to laminates with matrix cracks
that are angled or curved rather than extending straight through
the 90° layer in the x)-x3 plane [24];

2) application of the model to laminates with both matrix
cracks and interply delaminations [27];

3) application of the model to layups more complex than
crogsply laminates; and

4) development of internal state variable growth laws for
matrix cracking and interply delamination.
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Table |. Material

Lamina Properties

Longitudinal Modulus
Transverse Modulus
Shear Modulus
Poisson’s Ratio
Longitudinal Strength
Transverse Strength
Long. Failure Strain

Tran. Faflure Strain

21.0 x 106

1.39 x
0.694 x
0.310 +

326,000 *
11,085 ¢
0.0144 =

0.00773 =

Properties for Hercules AS4/3502

"

2.0% psi

106 + 2.1%9 psi

113

10% psi
3.7%

3.5% psi
9.8% psi
4.6% in/in

6.7% in/in




APPENDIX A: APPLICATION OF SYMMETRY CONSTRAINTS

The deamage-dependent constitutive model (equations (42)
through (45) of Part I (1)) is defined as follows:

R T n n
UM T S ST S L S RAR Y ETPLIS! . (la)

where aij él the local stress tensor, €x is the local strain
tensor, o is the residual stress in the absence of strai? and
temperature change, Ci k1 is the undamaged modulus tensor, €1 is
the thermal strain tensor, a"l is the {internal state variable
tensor, and I? k1l is the damage modulus tensor. Furthermore, we
have dropped the subscript L (denoting locally averaged
quantities) for convenience.

For demonstration purposes, the residual stress tensor and
the temperature change are assumed to be negligible, resulting in

= n n

Note that Injk is a fourth order tensor with 8] coefficients .or
each value of n. It is assumed here that the constitutive
equationsg given by (2a) are statistically homogeneous.
Therefore, the conditions of stress and strain symmetry as well
as the existence of an elastic potential can be applied to
equations (2a) to obtain

Cisk1®C5ikz: Co5k1™C1j1kr Ci5k1=Ck11ij v (3a)
and

n . .

Iisk1=ljix1 . (4a)

It is most convenient at this point to reindex the constitutive

tensors using the Voigt notation [28] where

91205, 0450923593
025022 6550133631 ’ (53)
03503, 0¢%0912%92)

and




€12 € 4%2¢23%2¢ 32
525522 5552£l3=2€31 . (6a)
C35833 5652512=2521

Furthermore, for all values of n
ajsag) a4%az3 a7%a3)
025022 055032 GBEOIZ . (78)
e3=ag3g3 cg=a)3 agaz)

Using the contracted notation, eguations (2a) can be written as
= n
oi’ci,jcj+l?k°k . (ea)

where i and J range from ! to 6, k ranges from ! to 9, and n
ranges from ) to N, where N is the number of damage modes.




APPENDIX B: SYMMETRY CONSTRAINTS ON THE DAMAGE MODULUS TENSOR

Consider the following component of internal energy due to
cracking:

c . 41 1
SRR RS LER LIS . (1b)

Since the strain tensor is symmetric

1 1
Vigki=l jiky . (2b)

Therefore, there are 54 {ndependent constants in the damage
modulus tensor I}Jk,. Expanding out equation (Ib) thus gives

WT=Tlp e e+ 1228 110524 11338 11033+ 1238 11023

+1y32¢ 119824 yse e st hise e d it iz o2
+11121611921% 122116220 | 1+1 22226 220 32+ 1 3233 22233

+132236 2295341 32328 220524132 138 220 34132316 2203

+132128220 12+ 13221622051+ 133116330 1 1+ 33228 33022
+13333¢330334 13323233083+ 1 43326 339324 133136 339 1 3

+1333,63308 1+ 133126330 2413321833021 %1 231 162301

+1}3226 2305241 2333€ 230331 23236 23 23+ 1 23326 23932

+1}3136230 3+ 1533162308, +1 23126230 121232152393
+1131113911%1}322¢ 13052+ 1 1333 13233%1 1 323¢ 13923
+11332613032+1 13136130 3% {331€ 1303+ 131261302
+11321813054 1] 2118120 1#1 12228 12052+ 1 | 233 12933
+11223¢12023%1 12328 120324112138 12213% 11231 1203

+1z126 12012+ 1221 1202, - (3b)
We now wish to impose orthotropic symmetry. In order to do

this, first rotate 180° about the x5 axis [28]. The direction
cosines for this transformation are




-1 0 O
[a’kr] = 0 -1 0 . (4b)
0 0 |

Therefore, since c‘J is a second order tensor,

ek.]'scua'koa‘“, i « (5b)
it follows that
€11 €12 ¢33
[Ck-'l] = 512 822 -Cz3 . (6b)
€13 "€23 €33
Furthermore,
1 S
@)1 @32 "%;3
[ 1 - 1 1 _.1 7
ﬂk'IlJ = 021 022 023 . (7b)
—al  _al ]
%3) "%32 %33 |
Since u? must be findependent of coordinate system
Uc=llr tmt atl rﬂll ’ (Sb)
17 'p’q’r’s’ " p’q’“r’s .

Substituting (6b) and (7b) into (8b) and comparing this result to
(3b) will result in

1112371 132°1 113=! 11311 22231 223270
132137 13231713323 133327133 13= 13330
[2311°13322=12333% 12312 12321=1 1311=0
1132271133371 {31271 1321= 1 1223=1]232=0
11,,3=1}55,=0 . (9b)

Rotating 180° about the x, axis gives




|

-1 0 0
[a;,-)=| 0 1 0O . (10B)

Therefore,

€11 “¢12 €3

[Ck;"] = -512 522 -523 . (11b)
€13 €23 £33
Furthermore,
1 ] 1
@11 %12 913
A[Qi']r] = -C%l Géz -053 . (IZb)
) 1 1
¢33 932 ¢33

Substituting (11b) and (12b) into (8b) and comparing to (3b)
results in

RS T DTS TS TS T
Ipiz2=t112151221251 2221133121332 =0
I ST DU U NS ST S S
12313=12331=11323=11332=1 12111 12225112330 - (13b)
Rotating 180° about the x, axis yields no additional constraints.

Therefore, imposition of orthotropic symmetry on lijk\ reduces
the number of constants to 15. These are

IhEliyyy H2fllizz 13121221
122513222 113%!1133 1312133y,
133913333 123712233 132713322 - (14b)
las¥13323  las®l33zz  1de2li3)3
13751133, lée®liziz  lde®!212)




Therefore, the orthotropic damsge modulus matrix s given by

ol 1 o
Iy T2 3

11 )
1}, 13, 1330 0 0o o o o0

o
o
o
o
o
o
—d

o
o
o
o
o
o

1,1 gl

1!y . I3y 132 133 -
11

06 0 0 1)4140 0 o0 O

o o o o o Il 1i;0 o

b

0 0 0 0 0 0 0 lea le9,
For the case where

el =t0 o} 0 0 ol 0 0 e 01 .
equation (15b) reduces to

!
11,0 o o o o o of

1
I, 0 o 0 0 0 0 0

o O O

!
. 150 0o o o 0o o0 O
o 0o o0 o 1llgo0 o o o

0 0 0 0 0 0 0 o 0

(15b)

(16b)

(17b)




APPENDIX C: DETERMINATION OF THE 1 MATRIX

At a materfal! point {n VL the stress-strain relation in the
absence of temperature change is

O‘J = Cijklck‘ . (lc)

Integrating over the local volume (excluding cracks) gives

’ 1 1
where o/ is the average stress cutside the damage zones. In

this section this value of the stress tensor is assumed to be
identical to the average stress °Lij' which includes the average
of the stress in the damage zones. Assuming that Cijkl is
spatially homogeneocus in VL' the above may be written

, C; Cc ! 1
L L
Vi-Ve VL-Ve

Using the divergence theorem on the last term gives

dl'..i_’ = Cijk] [‘\l/-'-'.}‘;-(ukn]*‘ulnk)ds"'%;: '—;-(Ukn]‘.'u‘nk)GSJ . (4c)

S S2

Or. equivalently,
. _ _l 1
ol13 = Cijk1 L1739 173 1K) - (5¢)

However, the Taylor series expansion has already given (for
isothermal conditions)

°lij5 = Cigkitkaitl ik . (6c)

Therefore, equating like terms fn equations (5¢) and (6c) gives




Figk1i==Cy 3

1
Lisk1==5 € 3k1*Cy 51k

k=

ke 1

(7¢)




APPENDIX D: LAMINATE EQUATIONS

The values of generalized plane strain are given by

o
€x Ex K %
o
€ ¢ <
Y 1a : +2Z Y ] » (1d)
€, [ 0
o
Exy € xy/ € xy

where the superscript o denotes the midsurface strains and the
¢ matrix denotes the midsurface curvatures. Under the condition
of generalized plane strain there is no warping allowed out-of-
plane, which implies that :z=0.

It fs now assumed that no moments or curvatures are imposed
and that all laminates studied are symmetric through the
thickness (incliuding damage). Therefore, in order to determine
the resultant forces, it is necessary only to integrate the given
stress state over the laminate thickness to obtain

t/2

Ny 9%
N .4

Y ) . Y \ az . (2d)
N, Sz
N c

x x

Y 72 y

where t is the total thickness of the laminate.
Substituting equations (8a) and (ld) into (2d) for the case
where there are no rotations results in

t/2 - - -
{N} = f ([C](e°}+[ll](ol)dz . (3d)
-t/2

where (N} denotes the force resultants, overbars denote that
these quantities are transformed to global coordinates, and (e¢©)
represents the mid-surface strains. Note that sfince transverse
cracks are assumed to go completely through the thickness of the
cracked plies the stiffness and damage are assumed to be
spacially constant through the thickness of a single ply.
Therefore, equation (3d) can be written as




-----“-----I

n - - -
(N = T (ICT, (2 =2y DI+ T Y (2 -2 ) 1)) . (4d)
where k specifies the ply and 22k ifs the thickness of each

ply. One can define

ang
1
D)
Dé n - -
{D) = | = I ([17) (2 -2 ) )) . (6d)
03 k=l
1
D4
where A; represents the laminate averaged stiffness matrix and

(D) is the laminate averaged damage term. Thus, the laminate
averaged constitutive equations become

{N}=[A](e®}+(D) . (79)

Experimental testing is often conducted on uniaxial testinc
machines in which the applied force resultants are input and the
strains are experimentally determined output. Therefore, at
times, it is more convenient to express the strains in terms of
the applied force resultants as follows:

(e®)=[A1" L({N)-(D}) . (8d)

Note also that moments will be produced even {n the absence of
strain if the damage state is not symmetric through the
thickness. However, for the case considered herein, it will be
assumed that all damage states are symmetric, and moments are
therefore not considered.




APPENDIX E: TRANSFORMATION EQUATIONS FOR THE DAMAGE
TENSOR AND THE OAMAGE MODULUS TENSOR

Consider a coordinate rotation 6 in the laminate plane (xl—
X, pilane) measured clockwise from the ply coordinate system to
the laminate coordinate system. For this case the direction
cosines are
cos® ~-sine O

[8{k-]) =] sine cosé O . (le)

0 0 1
Recall that since °2J is a second order tensor
:1,]. = °¥jaik’ajl' . (2e)
Substituting (le) into (2e) for a%J given by equation (l1éb) gives

a{zcosesine+cézsinze ~\
-a%zsinecoss+aé2cosze
0

0

(aly = al,cose . (3e)
0
al,sine
32

o{zcosze+aézsinecose

-c{251n29+aé25inecose /

Furthermore, 1l

p'g’'r’s’ is given by

- 11
Ip'qrrrsv = lijklaiprajq'akrla]s' . (48)

Substituting the nonzero components from equation (17b) into (4de)
gives




7! - 1 ]
lplqorrsl = llZalp.alq,aZr'625.+12282p,62q.62r-azs,

1 1
+l3282p-82q,33r.535,+16862p.alq'alr'azs. . (5e)




APPENDIX F: DIMENSIONAL ANALYSIS OF STRAIN
ENERGY RELEASE RATES

This appendix develops an approximate dimensional analysis
of the strain energy release rate of a cross-ply laminate
containing matrix cracks in the 90° plies. The analysis does not
attempt to fully address the complexity of the cracking process.
For example, the nonlinear material effects, crack-tip blunting
at the 0/90 interfaces, and the relative thickness. of the 0°
constraint layers are not included in the simplified analysis.
In spite of these limitations, the analysis does adequately
account for the influence on the strain energy release rate due
to the spacing of pre-existing matrix cracks in the 90° tayers
and the thickness of the 90° layers. The experimental results
displayed in nondimensional form in Fig. F2 suggest that these
are the two important dimensional parameters for cross-ply
laminates and all other effects are secondary.

Consider the cracked 90° layer shown in Fig. FI. The total
strain energy in the region surrounding the crack that includes
the strain energy available to be released during crack extension
is given by

U= Uy + Up » (1F)

where UA is the strain energy ahead of the advancing crack, and
UB is the strain energy behind the advancing crack.

In terms of strain energy density, Uo' equation (l1f) becomes

U = (Uy), [tw-a)ep] + (U )gltate] . (2F)

where ‘E is the effective length of the materfal from which
strain energy will be released by the advancing crack. It should
be noted that we are not suggesting that strain energy is only
released from a volume of material that is a rectangular
parallelepiped. This concept of an effective length is used only
as a convenience , as will become evident in the following
development. The effective tength is a function of both the
crack spacing, S, and the thickness of the 90° layer. Therefore,
lE can be expressed as

lE = ct . (BF)

where ¢ is a nondimensional function of the crack spacing and the
90° tayer thickness. In addition, the strain energy density
ahead of the crack and behind the crack can be expressed as
functions of the strain energy density in the 90° layer in the
absence of cracks multiplied by some dimensionless constant that
depends on the existing matrix crack spacing and the thickness of
the 90° layer. MWritten symbolically, then




(U = Uy Fa . (4f)

o
and
(UO)B = Uo FB : .« (5F)

where U. is the strain energy density in the 90° layer in the
absence of cracks. and FA and fo are functions of the crack
spacing, S, and thickness, t. Substituting (3f), (4f) and (5f)
into (2f) yields

UgFaletZ(w-a)1+U Fglct?a)

C
|

2

Strain energy release rate at each crack tip is defined as
follows

G = 22U . (7F)
2a

L
-2t
Substituting (6f) into (7f) thus gives

G = 5~ UgCt (Fy=Fg) . (8F)

Notice that c., FA and FB are all functions of the layer thickness
and existina matrix crack spacing. Therefore, define 3 new
function f such that

F(S,t) = c(fy~Fg) . (9F)

Since the function f(S.t) is a dimensionless function, it must be
a function of S/t. Therefore,

c(fp-fg)=F(S/Tt) . (10f)

Substituting (10f) into (8f) yields the following expression for
the available strain eneray release rate for matrix cracks




= Jd
G = de(U FIS/D)) . (11F)

Therefore, the available strain energy release rate due to matrix
cracks in a 90° layer is linearly proportional to the thickness
of the 90° laver. The guantity in the brackets in equation (11f)
is related to the properties of the composite material system and
the laminate stacking sequence. This quantity can be determined
from experimental data.

lf it is assumed that cracking occurs when the available
strain enerqgy release rate is equal to the critical strain energy
release rate which is constant for all matrix cracking. then

G = Gog . (12F)

Furthermore, for a linear elastic material with rigid fibers, the
strain energy density is given by

2

- J
U _'EEZZ Y . (13F)

o

Substituting (11f) and (13f) into (12f) and solving for strain
results in the following expression for the strain in the 90°
layer at which matrix crack extension occurs:

1/2
. GcR . (laf)
22 © -
tEZZF(S/t)
Rearranaing gives
4Gcr . (15€)

> = £(S/t)
tEzz €22

Finally., the thickness of the 90° layer is given by

t = nt, . (16F)

where t {is the thickness of one ply and n is the number of
consecutive 90° plies. Substituting equation (16f) into (15F)
results in




4Geri_ 1 | = f(s/ty . (17F)
t)E22 [neb;
l1f the influence function, f(S/t), is constant for all laminate
stacking sequences, then the left hand side of equation (15f)
will be a function of matrix crack surface ares only.

The terms in parentheses on the left and right hand sides of
equation (17f) are laminate specific while all other terms are
constants. TQF function f(S/t) is constant for all laminates then
a plot of nes, versus t/S should be the same for all laminates.
The experimental data is plotted Iin Fig. F2 and as can be seen
the data for all laminates follow the same trend curve.
Therefore, it can be seen that the available strain energy
release rate is a function of the 90° layer thickness and the
matrix crack surface area. Al!ll other laminate parameters such as
the number of consecutive 0° plies results in second order
effects on the energy release rate.
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ABSTRACT

Experimental evidence has shown that significant stiffness loss occurs in
graphite/epoxy laminates when matrix cracking and interply delaminations
exist. Therefore, a cumulative damage model for predicting stiffness loss in
graphite/epoxy laminates is proposed herein by applying a thermomechanical
constitutive theory for elastic composites with distributed damage. The model
proceeds from a continuum mechanics and thermodynamics approach wherein the
distributed damage is characterized by a set of second order tensor valued
internal state variables. The internal state variables represent locally
averaged measures of matrix cracking and interply delaminations. The model
formulation provides a set of damage dependent laminated plate equations.
These are developed by modifying the classical Kirchhoff plate theory. The
effect of the matrix cracking enters the formulation through alteration in the
individual lamina constitution. The effect of interply delamination enters
the formulation through modifications of the Kirchhoff displacements. The
corresponding internal state variables are defined utilizing the kinematics of
the interply delaminated region and the divergence theorem. These internal
state variables depend on the components of the displacements created by the

delamination.

KEY WORDS

laminated composites, damage, graphite/epoxy, continuum mechanics, plate

theory, internal state variables, matrix cracking, delamination




INTRODUCT ION

Damage accumulation in composite laminates has become an extremely
tmportant design consideration in modern aerospace structures. Consequently,
the composite designer must be aware of the effect of damage on the structural
response. Previous research in damage mechanics has experimentally identified
the various types of damage and their initiation mechanisms. This has been
supported by extensive analytical investigations describing the stress and
deformation fields in the damaged region. These methods include finite
element analysis, finite differencing, shear 1lag, fracture mechanics,
nonl inear viscoelasticity, and general boundary value problem solutions for
special crack geometries.

In spite of the considerable research that has occurred, a comprehensive
understanding and formulation of the mechanics of damage in composite
materials is not yet complete. Only recently has significant attention been
given to the development of cumulative damage models capable of predicting the
material response due to damage. These models proceed from three conceptually
different bases: 1) fracture mechanics in conjunction with microcracking [1-
71, 2); empiricism [8-12]; and 3) phenomenological internal state variable
theories which are based on thermodynamics [13-20].

As shown in Fig. 1., experimental evidence indicates that axial stiffness
of graphite/epoxy crossply laminates is significantly affected by matrix
cracking and interply delamination. The stiffness values are normalized and
compared to the matrix crack density prior to saturation and then to the
observable surface area of delaminations after saturation. The surface area
of cracking for each damage mode was determined from edge replicas and X-ray

radiographs which were obtained periodically throughout the load history. The




X-ray radiograph corresponding to matrix crack saturation in the 90° plies of
a [02.902)S laminate is shown in Fig. 2 and the radiograph corresponding to
approximately 35% delamination, as measured by an optical planimeter, at the
0°-90° interface is shown in Fig. 3. Further discussion of the experimental
observation of the effect of damage mechanisms such as matrix cracking and
interply delamination on stiffness in crossply laminates is presented in
references 21 through 23.

On the basis of these experimental results, a cumulative damage model for
predicting stiffness loss in composite laminates in the presence of matrix
cracks and interply delaminations is proposed herein . The constitutive model
represents an extension of the internal state variable approach formulated by
Allen, et al. [19,20]. The theoretical development utilizes the concepts of
continuum damage mechanics wherein the effects of the internal microcracking
are reflected through alterations of the local constitutive relations. This
procedure is pragmatic when compared to other alternatives such as treating
each internal crack boundary as a surface in a mulitiply connected domain,
thus producing an analytically untenable boundary value problem. In order for
the model to be accurate, statistical homogeneity of the damage is required on
a local volume scale which is large compared to the laminate microstructure
but small compared to the boundary value problem of interest. Previous
applications of the model {20,24] have considered matrix cracking only. It is
assumed that this damage is statistically homogeneous in the local volume of
the cracked plies. Therefore, the effect of matrix cracking is directly
reflected through alterations of the 1individual 1lamina constitutive
properties. In the current paper, interply delaminations will be included in
the previousily proposed theory. Since interply delaminations are not

statistically homogeneous in the out-of-plane coordinate direction, a




kinematic constraint equation is utilized to modify the previous theory.

The stiffness of multilayered laminates can be obtained by averaging the
individual lamina constitutive properties. For undamaged laminates this may
be accomplished by imposing the Kirchhoff hypothesis for plates ([25] and
integrating the 1local ply constitutive equations over the laminate
thickness. Higher order plate theories such as those developed by Mindlin
[26], Reissner [27], and Reddy [28] which account for transverse shear
deformations could be utilized as well. A modified form of the Kirchhoff

hypothesis is assumed to suffice herein.

MCOEL DEVELOPMENT

The Kirchhoff hypothesis must be altered to reflect the kinematic changes
due to damage in the local volume element, VL' as shown in Fig. 4. The effect
of interply delamination is to produce a Jjump discontinuity in the
displacement field. By contrast, the kinematic effects of matrix cracking
have already been locally averaged into ply constitutive properties [20].
Thus, the effect of interply delamination enters the laminate formulation
through alteration in the through-thickness kinematics and the effect of
matrix cracking enters the laminate formulation through alteration in the
individual lamina constitutive properties.

The deformation geometry and through-thickness variation of displacements

for region VL are shown in fFig. 5. Here uE

is the jump discontinuity due to
interply delamination. Because of the delamination, the normals to the
midplane are no longer constrained to remain normal after deformation. Line
A-A' represents the actual before and'after kinematics due to delamination.

On the other hand, line C-C' represents the average effect of the




delaminations in V . The rotation, 8, 1in each ply will also be altered by
the delamination as shown in Fig. 5. This implies that 8 may also be subject
to a jump discontinuity at the damaged ply interface. The x component of the

displacement field shown in Fig. 5 is therefore assumed to be given by
0 0 D D
u(x,y,2) =u (x,y) - zl[8 + H(z-2;) 8 ] + H(z-2,) u; (1)

where uois the midplane displacement, Bois the undamaged ply rotation, 8? is
the ply jump rotation in the x-z plane due to delamination, u? is the ply jump
extension, and H(z-zi) is the Heavyside step function. For notational
simplicity the Heavyside step function will be written as H(zi) z H(z-zi).

The subscript 11 denotes the ith interface 1location of the interply

delamination and the repeated 1 subscripts imply a summation over the number

of damaged ply interfaces. It 1is apparent from Fig. 5 that
u°, BO. B?. and u? depend only on the x and y coordinates.

Similarly, the displacement in the y coordinate direction is assumed to

be given by
0 0 D D
V(X,¥,2) = Vv (Xx,y) - z (v + H(Zi) by ) + H(Zi) Vi (2)

where v° is the midplane displacement, vo is the undamaged ply rotation, v? is
D

the ply jump rotation in the y-z plane due to delamination, and v; is the ply
Jump extension in the y coordinate direction.
The through-thickness displacement is assumed to be given by
0 D
wix,y,z) = w(x,y) + H(zy) w (3)
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The displacement equations are averaged over the 1local area, AL,

shown in Fig. 4, in order to produce locally averaged displacements to be

utilized in the laminate formulation. Thus,

a(y2) = § I 1% 2(8% Mz (1) + H(zy) uflaxay (4)
L

v (aya2) = & [ Iv- 2(6%% Kz (6D) + H(zy) vDldxdy (5)

and . AL

W (x,y,2) = %L J'A[wo + H(z;) W3 ldxdy (6)
L

By averaging the displacements, the delamination jump discontinuities are also
averaged over AL'

The laminate strains are given by

L, ':;L (7)
L, " =t (8)
L, ;;L (9)
YLyz= ;;L + ;;L (10)




Mo, vy
2y ax

Yny (12)
Thus, due to the interply delamination all six components of the strain must
be included in the laminate formulation.

The laminate constitution is obtained by integrating the stress in each
lamina over the laminate thickness. The local lamina constitution is assumed
to be anisotropic since the jump displacements resuiting from delamination
produce local anisotropic responses. That is, the out-of-plane shear strains,

1 and YL z' resulting from delamination will contribute to the force

X2
resultants. The local lamina constitution is given by [20]

\
- ( "
oL, Q1 Q2 U3 Q Q5 Qg L %xx
M
°L, |- Q2 Q2 Q3 Oy Q5 Qp L%y
M
c Q Q Q Q Q Q €, - &
Lyy 16 Y26 Y36 “a6 “s6 66J< L~ ‘2z
vy, - 0@
L,
w- 0 (13)
e
L Xy
Y

where [Q] 1is the transformed anisotropic stiffness matrix for the lamina and

M M M M
xx® Cyy* %zz° and Syy

matrix cracking in terms of laminate coordinates, defined in references 19 and

20.

a represent the strain-like internal state variables for

The resultant midplane forces and moments per unit width of region VL

in the laminate are given by




t/2
Ny Ox
:y z J oy dz (14)
Xy -t/2 OX.Y
and
t/2
My 9%
:y = {o, Yzaz (15)
Xy _t/2 Uxy

where t is the laminate thickness.
In order to obtain the resultant laminate forces, first substitute

equation (13) into (14) to obtain
t/2

Ny = [ [Q] {{e ) - (a
-t/2

M) a2 (16)

The locally averaged strains are substituted into equation (16) to give

- .
Fau )
X
av
ay
M
t/2 kL] dxdy - (@1 | 4z
W o= 1| Loy <§3 . (17)
u aw
2z Vax
3u av
2y ¥ axJ |

where u, v, and w represent the modified Kirchhoff displacements.

The divergence theorem is now utilized in order to simplify the volume




integrals in equation (17). The main objective of applying the divergence
theorem is to obtain an expression for an internal state variable for interply
delamination which is similar in form to the ISV for matrix cracking. The ISV
for interply delamination should reflect the kinematics of the cracking
process shown in Fig. 6. Applying the divergence theorem to the resultant

forces yields

fu n N
X
. :
(N} = %L IS [al < v n§+wny as - kil [Q]k(zk- zk-l) {“M}k
Un+wn
LY ny+ v, (18)

where Nys "y' and n, represent the components of the unit outer normal on
surface S. Note that the integration over S includes both the external
boundary of VL' Sl, and the internal crack boundaries, 52’ as shown
in Fig. 6. The last term in equation (18) is obtained by noting that [Q]
and {cm} are piecewise constant in each ply, denoted by the subscript k, which
ranges from one to the number of plies.

The next step 1s to substitute in the actual modified Kirchhoff
displacements given by equations (1), (2), and (3) into equation (18). It is
noted that for terms involving gradients in 2z, only those terms that are

dependent on z need be retained. Thus, equation (18) becomes




( [u’- z[s° + H(z,) a?) + H(zy) u?] n,
[v°- z(uo + H(zy) 02] + H(zi) v?] ny
[ H(z) W] n,
[-2(6° + H(z) ¥]) + H(zy) Vi1 n +
N =3 Is [0]< (W’ + H(z,)w}] n, > ds

L
[-2(8° + H(z;) 85) + H(zy) ST n +

(W’ + H(z) Wil n
[uo- z(eo + H(zi) s?] + H(zi) u?] n, +

\ [v°- z[u° + H(z1) w?] + H(zi) v?] n J

n
- B (e 7 ) ™, (19)

The next step is to integrate equation (19) over S1 and SZ’ This
result will be simplified by separating the extensional and rotational terms
over S1 into two different separate terms. On the delamination surface, 52’
n, is assumed to be the only nonzero component of the unit outer normal
because the integration is performed with respect to undeformed coordinates.

The surface S, represents the external boundary of an equivalent local
volume which contains no cracks. Therefore, it is assumed that no cracks
intersect $;. It fcllows that the terms containing the superscript D are all
zero on S;. Therefore, integrating the undamaged displacement terms 1in

equation (19) on S, gives
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L Uiy vEny Ubxy )  (20)

In a similar manner, the rotational displacements acting on S1 result in the
average mid-plane rotations which when integrated over S1 yield the average
curvatures of the laminate. Thus, the undamaged rotations in equation (19)

are defined as

0 N\

rB nX r N
v'n “Lx

'y K
< ° > 1 " 2 2 cL)y
1 o -
iNz==-5 T Q1Y wn 2dS =5 I [Ql (z0- 2 )< >

Bonz . KLXZ

(BN, + ¥ Ny “Lxy) (21)

where {x} denotes the average midplane curvatures.
Now consider the integration of equations (19) over the delamination
surface S,. Because the integration 1is performed 1in undeformed

coordinates n, = ny =0, n, = t1, and the integral simplifies to
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lu? - z(s?)]nz
0 J

where d is the number of delaminated interplies and 521 is the surface area

(22)

of all delaminations in V| in the ith ply interface.

Now again consider Fig. 6. The integration for a typical delamination
given in equation (22) must be carried out over both top and bottom surfaces
of the crack faces. Since the matrix [Q] is in most applications constant but
with different values on each crack face the displacement terms in equation

(22) may be written in the following form
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1 T D B
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0 ) goJ

where superscripts T apply to the top crack face and superscripts B apply to
the bottom crack face.

Now suppose furthermore that the average displacements at each ply
interface, represented by the two integral terms in equation (23), are
symmetric about the ply interface. It follows that
r 0 w
0

lﬁliti “?i (24)
{

21

]
*3i

L0

j
Ny} =
35

where

(a1} + a1
y s —— (25)

and the following components of the delamination ISV are now defined
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°?1 z %— { w?nzds (26a)
Li s
21
agy == [ 3 nds (26b)
i s
21
oy =& [ulngs (26¢)
Li s
21
and
Vij =t AL (27)

where t; is defined to be the thickness of the two plies above and below the
delamination, as shown 1in Fig. 6. In addition, it is assumed that
551 = Sgi’ It is noteworthy that the definitions of the internal state
variables (ISV's) given by equations (30) are similar to those given for
matrix cracking [19,20]. In the current paper 021. 021, and a21 represent
average crack opening displacements in the ith deplied interface in the z, y,
and x coordinate directions. It can be seen that for these three components
of the ISV for delamination the local volume V, is represented by the ply on
either side of the delamination.

Now consider the rotation terms in equation (22)
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The above may be written
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;?8 z %— I vbg n,ds (30c)
L B
S
21
8. L o0y (30d)
i AL B iz
S
23

are the average rotations on the top and bottom crack surfaces in the

delaminated ply. It is now assumed that the average rotation is independent

of 2 between delaminations. Thus, since nI = - ng =1,
-0 _-DB _ DT _
04(1+1) = "1 = -y 1+1 1“1,.-o|d-1
D 08 D7
GS(i"’l) = 81 = ‘81+1 1=1,.-.,d-1 (31)
Suppose we also define
b _ =0T D _ -EDT
ag) = "% » 851 = -B)
D _ -D8 D _-DB
G4(d+1) = "d . 05(d+1) = Bd (32)

as shown in Fig. 7. Equation (29) may then be written as follows:
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Then, equation (37) may be written

0
0
d+1 _ 0
Wt = 1 (24 - 200) [Qly | gy >
i=1 0
a
51
. 0 J
where, by definition
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2= 0, Q1§ = [0], 24, = 0, [Q]}, = (O] (36)

Equations (20), (21), (24), and (35) may now be substituted into equation (19)
to give

_ 97 o, .1 7§ 2 _ 2
{N} = kzllolk (Zk - zk-l) {EL} =7 kzl [Q]k (zk - zk-l) {"L}

(0 (0 )

0 0

d D

- Gli d+1 - 0

+ 1 )y < D > + 1o (zy -2 9) Q)]
i=1 ans 11 ag
D D

@34 %54

. 0 y \. 0 J

n M

The moment resultants are obtained in a similar manner to the force
resultants. Applying the divergence theorem to the moment resultants given in
equation (15), z must be transferred inside the displacement gradients. Thus,

equation (15) is written as
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x(2v) A
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M o= [l 4 S a2 ) dxdy - (a™Mz|dz (38)
-t/2 L AL -a-;(zv) -V + W(zw)

g;(zu) -u+ %i‘z”)

) 3
\ay(zu) + ax(zv)

where equation (13) has been utilized to obtain the above resuilt.
Note that the terms involving gradients in z yield extra terms for which
the divergence theorem does not apply. Applying the divergence theorem to

equation (38) gives

r N
zun, T 0
zvn.y 0

1 <zwnz > 1 w>

Moo= g T AN e zun ds - 3= [ Q1) , /dxdydz

L S z y L v
z nz+ Z W n, L u
\zuny+zvnx) go;

-1 E[Q] 22 - 22 ) @M (39)

It is now assumed that the applied moments are independent of rigid body
motions. Therefore, the second term in equation (39) may be neglected.
The modified Kirchhoff displacements are substituted into equation (39)

to give
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n
- 21 [Qlk(zﬁ' 25-1) {“M}k (40)

The next step s to 1integrate the first term 1in equation (40)
over S1 and 52' Again, this result will be simplified by separating the
extensional and rotational terms over S1 into two different terms. Thus,

equation (40) becomes
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Integrating the undamaged displacement terms in equation (41) on S; gives
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Now consider the term in equation (41) which {s integrated over S,. Because

the integration is performed in undeformed coordinates Ny = Ny =0, n, = ¢ 1,

and this term reduces to
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where d is the number of delaminated interplies and

of all delaminations in VL in the ith ply interface.

>zdS

-
[N

(44)

s i is the surface area

Integrating the displacement equation (44) over the top and bottom

delamination surfaces gives

{M3)

§1 ) ds + 2,018 |
121 A (zylQly 1 5“: + iy 1

sz1< 0
v
i
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where superscripts T apply to the top crack face and superscripts B apply to

the bottom crack face.

Now suppose furthermore that the average displacements at each ply
interface, represented by the two integral terms in equation (45), are

symmetric about the ply interface. It follows that

(0 )
0
M) = flﬁltz o (46)
3 = L, <°11>

D

921

0
%34
\OJ

where

T, (0B
z,(1Q); + [Qly)
Qly = = ;t1 1 (47)

Now consider the rotation terms in equation (44):
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Then, equation (49) may be written
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Equations (42), (43), (46), and (51) may now be substituted into equation (41)

to give
o=t T @22 -1 ] o, @)
AN T S T S URL GRS B AL A S U
- (0 (0]
0 0
D
d _ a d+l 0
i R ] < ) > DR (AT ) < D
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| 1 7 2 2 M
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COMPARISON OF MODEL PREDICTIONS TO EXPERIMENTAL RESULTS

The suitability of the above damage-dependent laminate analysis equations
must be assessed by comparing displacements predicted by the damage model to
experimentally measured values. This is accomplished herein by comparing
model predictions to the damage-degraded engineering modulus, E,, of several
laminates determined from tensile coupon tests. A limited number of test
results have been obtained for AS-4/3502 graphite/epoxy laminates with a
quasi-isotropic and several cross-ply stacking sequences. The combined matrix
cracking and delamination damage modes were generated by tension-tension
fatigue loading (R=0.1) at 2 Hz and the engineering modulus of the laminate
was measured by a 1.0 in. extensometer.

A reasonable indication of the validity and usefulness of the postulated
damage-dependent laminate analysis equations may be obtained by comparing
results obtained for a somewhat simplified but nonetheless realistic laminate
with damage. The special case considered herein is a symmetric, balanced
laminate subjected to an in-plane loading N, and with a single delamination
jnterface site that is symmetric about the laminate midplane. Defining the

engineering modulus as follows

m
"
o] —
(-]
=z
x

(53)

(M
(]
b3

and using equation (37), the damage-dependent engineering modulus is given by

M T B D
p D 1 N 3a ty (Qg)) *+ (Qg)) 230y
= n L Qude a1 Qi 3cx)k a 2 bee, 9
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where c: and ag are the only contributing ISV's for matrix crack damage and

delamination damage, respectively, for the special case of interest here. The
procedure for specifying the value of the ISV for a particular damage state is
presented in Reference 22 and makes use of the strain energy release rate for
crack surface area creation. The expression for the matrix crack ISV

specified for a single 90° ply is given by [22]

m
x X

E

3a E £
Rl i bl ol IERY (55)
X I22 xo 'S

where n is the number of consecutive 90° plies in the 90° layer, p 1is the
number of 0° plies, q is the number of 90° plies in the laminate and Exl/Exo'S
was determined experimentally for the [0/90/0]¢ laminate containing a single
90° layer with matrix crack surface area, S. Using the O0'Brien [30]
delamination strain energy release rate model as a first approximation the

delamination ISV is given by

wo

- € D) (56)
(@) + @)

Q

e n

2

€x

where n is the number of plies in the laminate, Sy is the delamination surface
area, S is the total interface surface area of the local volume, and E* is

given by
d
Z E1t1 (57)

where E; 1s equal to E, for the sublaminates and t; is the thickness of the
sublaminates formed by the delamination. Therefore, equations (54-57) may be

used to predict the damage degraded engineering modulus of any symmetric,
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balanced laminate with one symmetrically located delamination site.

A comparison of the model prediction of E, to experimental results is
presented in Table 1 for the l02/902]s and [0/:45/90]s laminates. The damage
degraded modulus has been normalized by the initial undamaged modulus. X-ray
radiographs of the damage states are shown in Figs. 3 and 8 for the

[02/902]s and [0/:45/90]s laminates, respectively. The comparison between
the theoretical and experimental results is quite good. While this is a very
limited comparison, the results are very encouraging because the stiffness
loss in the [02/902]s Taminate is primarily due to matrix cracking, whereas
the stiffness 1loss in the [0/145/90]s laminate 1s primarily due to the

delaminations.

SUMMARY AND CONCLUSIONS

This paper has presented a formulation of a cumulative damage model for
continuous fiber composites in the presence of matrix cracking and interply
delamination. The model represents a set of damage dependent laminate plate
equations. The laminate equations were developed utilizing classical
Kirchhoff plate theory as well as standard continuum mechanics. The key

developments of the theory are enumerated below:

1. The damage is reflected in the laminate equations through the second order
tensor-valued internal state variables. These ISV's are dependent on the
observed surface area of damage. The emphasis of this research has been to

obtain a consistent definition of the ISV for interply delamination.
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Although the ISV's are defined similarily, they enter the formulation in
different ways. The ISV for matrix cracking enters at the ply level
through alteration in the lamina constitution because this damage is fully
contained within the cracked plies. The ISV for interply delamination
enters at the laminate 1level through alteration in the Kirchhoff
displacements. This is due to the fact that the delamination occurs at the
interface of dissimilar materials, which results 1in statistical
nonhomogeneity and thus cannot be reflected through changes in the lamina
constitution. The separation of the ISV's between lamina and laminate

behavior was a major part of the model development.

Because the ISV for interply delamination represents the three out-of-plane
strain components, an anisotropic material response must be assumed in
order to couple the out-of-plane strains with the in-plane laminate
forces. Therefore, all six components of the strain are accounted for in
the overall constitutive response. This assumption was a key part of the
model development which eventually led to the consistent definition of the

ISV for interply delamination.

By averaging the modified kinematic relations over the local domain of
interest and then applying the divergence theorem the actual definition of
the ISV was obtained.

The local anisotropic properties were defined in terms of the response of

the sublaminate, created by the delamination, to the applied "jump"

displacements.
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6. The ISV's have been related to the surface area of damage using linear
elastic fracture mechanics. By determining the energy release rate for

each damage mode the ISV's are fully defined.

A total of three new changes were introduced to the standard laminate
equations: 1) the ISV for matrix cracking, 2) the ISV for interply
delamination, and 3) the local anisotropic stiffness.

The ultimate objective of any continuum mechanics model is to design
structural components so as to avoid failure. In the sense that laminated
composites fail due to a complex sequence of damage events, it is essential to
capture the important features of the damage process in order to accurately
predict failure. Obviously this will be a complex task 1in laminated
composites, but, as Einstein once put it, a good theory should be as simple as
possible but no simpler than that.

The authors have constructed a continuum damage model for Ilaminated
continuous fiber composites. This model utilizes second order tensor-valued
internal sta}e variables to account for both matrix cracking and delamination
at the sub-laminate level in such a way as to produce a stacking sequence
independent model. The input properties may be obtained from a single
[0,90,0] specimen.

The model has thus far been shown to be accurate in predicting both in-
plane and out-of-plane stiffness loss in crossply specimens with both vertical
and curved matrix cracks. Efforts are currently underway to compare model
stiffness predictions to experiment for quasi-isotropic laminates with both
matrix cracks and delaminations. The initial comparison are quite
encouraging. Research 1s also underway to develop stacking sequence

independent ISV growth laws for matrix cracking and delaminations.
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The ultimate goal of this research is to develop a model capable of

predicting failure of a component subjected to loads resulting in stress

gradients. Toward this end, it 1is believed by these authors that the

essential ingredients are now in place for constructing a failure function

which describes fiber fracture as a function of matrix cracking and

delamination.
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TABLE 1 RESULTS FOR GRAPHITE/EPOXY LAMINATES

LAMINATE STACKING
SEQUENCE

NUMBER OF CRACKS
PER INCH IN 90° LAYER

DELAMINATION INTERFACE
PERCENT DELAMINATION

E
fﬁ EXPERIMENTAL

%o

E
EE- MODEL PREDICTION
X

0

[02/902]5

54

0/90

47.3

0.949

0.939

35

[0/245/90)

44

-45/90

57.0

0.888

0.878




FIGURE CAPTIONS

Fig. 1. Axial stiffness loss in a [02.902]s graphite/epoxy laminate with
matrix cracking and interply delaminations.

Fig. 2. Matrix crack saturation in a [0,,90;]; laminate.

Fig. 3. Interply delamination in a [0,,90,]; laminate.
300,000 cycles.

Fig. 4. Characteristic local region of damage. a) general laminate, b)
exploded view of V| with damage.

Fig. 5. Deformation geometry for region A .
Fig. 6. Interply delamination in a laminated continuous fiber composite.
Fig. 7. Schematic of delaminated region in a composite layup.

Fig. 8. Combined damage mode in [0/£45/90], due to tension-tension fatigue.
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NORMALIZED AXIAL STIFFNESS
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1. Axial stiffness loss in a [02.902]s graphite/epoxy laminate

with matrix cracking and interply delamination.
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a) general laminate
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b) exploded view with damage

Fig. 4. Characteristic local region of damage. a) general

laminate, b) exploded view of VL with damage.
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Abstract

Continuous fiber laminated composites are known to undergo substantial
load induced damage in the form of matrix cracking, interior delamination,
fiber fracture, etc. These damage modes produce significant losses in
component performance measures such as stiffness, residual strength, and
life. The authors have previously constructed a general model for predicting
the response of laminated composites with damage. The current paper utilizes
the model to predict stiffness loss as a function of damage in quasi-isotropic
and angle-ply laminates with matrix cracks. It is shown that the model is
capable of predicting the stiffness loss for any layup by utilizing the same
input data, thus producing a model which is independent of stacking
sequence. The favorable comparisons of the model to experimental results

reported herein support the validity of the model.




Introduction

The thermomechanical response of laminated continuous fiber composites is
quite complex due to stress concentrations resulting from fiber-matrix
interaction and the layered orthotropy of the medium, The stress
concentrations resulting from this local material inhomogeneity are
significant in the sense that they may cause substantial impairment of
component performance. However, the development of microcracks can often be
utilized advantageously as a toughening mechanism. Just as the small scale
material inhomogeneity tends to initiate cracks, it also serves as a crack
arrestor. Thus, a field of microcracks develops, and the resulting loss of
local structural integrity causes 1load transferral which is similar to
plasticity 'in pure metals. Therefore, if the effects of microcracks in
laminated composites can be accurately modelled, it is possible to utilize a
greater portion of component life.

The difficulty in developing a useful model 1lies 1in the inherent
complexity of microstructural damage in laminated composites. Unlike pure
metals, it is not uncommon for laminated continuous fiber composites to
develop several different modes of damage such as matrix cracking, interply
delamination, fiber fracture, fiber-matrix debond, and fiber crimping. In
addition, there 1is significant interaction between the various modes of
damage. For example, 1interply delamination tends to initiate at the
intersection of matrix cracks in adjacent plies, and fiber fracture tends to
concentrate near the delamination sites. The cracks are so numerous and
diverse that any attempt to model each crack individually is hopelessly
complex. However, the scale of the cracks is usually very small compared to

the scale of the structural component, Because of this, it is possible to




assume that the body remains continuous and the effects of microcracks may be
introduced via appropriate spatially variable reductions in the elastic
constitutive properties. Such an approach is called continuum damage
mechanics (Kachanov, 1958; Kachanov, 1986).

The concept of continuum damage mechanics has been utilized extensively
over the past twenty-five years (Bazant, 1986; Krajcinovic, 1984; Krajcinovic,
1986). However, most applications have been for initially isotropic media.
Very few attempts have been made to utilize this concept for laminated
composite media (Talreja, 1985; Allen, Harris, and Groves, 1987; Weitsman,
1985). The primary difficuity has been the layered orthotropy of these
materials. The authors have recently developed a damage model which is
applicable to laminated fibrous composites (Allen, Harris, and Groves, 1987;
Allen, Harrjs. Groves, and Norvell, 1987; Allen, Groves, and Harris, 1987).
This microstructural damage may be induced by mechanical loads or environment
such as elevated temperature. The model has been utilized to predict the
response of composite crossply laminates with matrix cracks, and these results
compare favorably to experiment (Allen, Harris, and Groves, 1987; Allen,
Harris, Groves, and Norvell, 1987), as shown in Fig. 1. The model has also
been developed for the case of combined matrix cracking and interply
delamination (Allen, Harris, and Groves, 1987; Allen, Groves, and Harris,
1987).

The purpose of the current paper is to demonstrate the use of the model
to predict various components of reduced stiffness for quasi-isotropic
taminates with matrix cracks in the off-axis plies, as shown in Fig. 2. It
will be shown that this can be accomplished by using experimental data from
[0,90,0]S and [:45]2S specimens, thus demonstrating that the model is

independent of stacking sequence. The paper will close with a comparison of




Voigt notation. Note that since o?j is in general asymmetric

MM MM MM
%1 * 1 *q = %23 %7 = %31

MM MM MM

02'_'“22 05:032 GB:QIZ (3)
MM MM MM

03:033 36:(!13 09:021

Although matrix cracks are sometimes observed to be curved (Allen,
Harris, Groves, and Norvell, 1987), it is assumed in this paper that all
matrix cracks are normal to the laminate midplane, as shown in Fig. 2. For

this case
¢C_ - - -
i-=08 +18&, +08&, (4)

in ply coordinates. Therefore, the only non-zero components of ug are

ag, 02, and ag. Also, due to in-plane symmetry of each ply it is assumed
that ag is negligible. Furthermore, it can be shown that I?j = -Cij (Allen,
Harris, and Groves, 1987), so that equation (2) reduces to
_ M M
o3 = Cyje5 = Ci02 - Cigog (3)
Standard laminate equations may be obtained from equations (5) by
utilizing the Kirchhoff hypothesis for thin plates. The resulting forces per

unit Tlength, (N}, are given by (Allen, Harris, and Groves, 1987; Allen,

Groves, and Harris, 1987)




n
e T S S S
(N} = £= IClk(zk - Zk-l) (e[} + 3 lC]k(zk - zk-l) (e, )

x M 3

1 =1

A M
- ¢ (Tl (2 - 7, 4) ta7)y (6)
k=1
where n is the number of plies, (ct) are the midplane strains, (KL} are the
midplane rotations, and overbars denote that quantities are transformed from
ply coordinates to laminate coordinates. Similarly, the moments per unit
length, {M}, are given by
= 3 3
(Cl (2 - 2z, _1) (e

" o2 2 0, 1
M} = 2 ﬁ= [C]k(zk - Zk—l) (eL) + 3

x ™3

1 =1

[E]k(zf< - zﬁ_l) @™, . (7)

N —

n
L
k=1

Furthermore, the damage tensor {aM) is transformed to global coordinates in

each ply. Thus, for the case of vertical matrix cracks

ET = sinze ag - sine cose ug
Zg = cosze ag + sine cose ag
;g = -sine cose ag + cosze ug
Zg = -sing cose ag - sinze ag (8)

where 8 is the angle relating the ply coordinates, denoted x:, to the laminate

j’
coordinates, denoted ;j’ as shown in Fig. 4. A1l other components of Z? are




zero due to the previously discussed assumptions.
. )
The components of the reduced stiffness, Sij' may be obtained by

differentiating equation (6) with respect to the midplane strains to obtain

v
' _ 1 aNi _ 1 n - C 301
Sij%n T kzll(c*lj)ktk - ( 11)ktk(:;—o)k
J J
aZg _ aZg aEg
- (c‘iz)ktk(——a)k - (cis)ktk('fo' + _—-6)k] (9)
aej aej aej

where h is the laminate thickness.
It has been previously shown (Allen, Harris, Groves, and Norvell, 1987)
that the damage parameters in equation (9) transform according to the

following transformation ,

M
aa.—. sa
—:%l— =a_a a_ a_ ——gﬂ (10)
de___ ip jq mr ns 3e.q
mn

where an are the direction cosines relating the ply coordinates to the

laminate coordinates, given by

cose ~sine 0
[&T ] = sine cose 0 (11)

P 0 0 1
Therefore, it can be seen from equations (9) and (10) that the damage
dependent stiffness can be evaluated if the last term in equation (10) can be
determined. Since it was previously assumed that only ag = agz and
cg = °T2 are not negligible for the current application, it is necessary to

M 0 M 0 ; . -

evaluate 3“22/3Ers and 3“12/a€rs' To do this, first note that for the case of

vertical matrix cracks the damage induces orthotropy which is concurrent with
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INTRODUCT ION

Fatigue induced damage in composite materials has been the subject of
numerous experimental investigations. The specific damage mechanisms have
been identified and the progression of damage is phenomenologically well
understood, as evidenced by numerous experimental studies documented in the
open literature. For example, the American Society for Testing and Materials
has devoted a number of Special Technical Publications (723, 775, 836, 876)
exclusively to the topic of damage in composites [1-4]. While these
experimental investigations have been supported by analytical research, there
are relatively few mathematical models that predict the effect of damage on
the structural response of composites. Those that can be identified [5-9] are
either limited in scope or still under development.

The writers have formulated a very promising model that predicts the
stress-strain behavior of continuous fiber reinforced laminated composites in
the presence of microstructural damage. The model is based on the concept of
continuum damage mechanics and uses internal state variables to characterize
the various damage modes. The associated internal Etate variable growth laws
are mathematical models of the Jloading history induced deveiopment of
microstructural damage. The damage model addresses both extension and bending
and is developed in the form of modified laminate analysis equations for easy
implementation. This model of the stress-strain behavior of laminates with
fatigue-induced damage is the subject of this paper.

The continuum damage mechanics approach accounts for the effect of
microstructural damage on structural behavior through damage dependent
constitutive relationships. Locally averaged constitutive properties are
computed from a representative local volume sufficient to represent the damage

but small relative to the boundary value problem of interest. Thus, the




effects of internal boundaries are reflected in constitutive equations rather
than internal boundary conditions. This is in contrast to the fracture
mechanics approach wherein each crack is treated as an internal boundary and
boundary conditions are specified on the crack faces. This is not a practical
approach to composite material systems that develop widespread load-induced
micrdstructural damage. On the other hand, continuum damage mechanics may be
used in conjunction with fraction mechanics to represent a macrocrack (via
boundary conditions) in a field of microcracks (via degraded material
constitution).

Continuum damage mechanics was first applied to metallic alloys in an
attempt to address issues in plasticity [10]. Recently the concept has been
applied to composite materials, although the first applications were to
randomly distributed particulate reinforced composites [11,12]. Several newly
developed models address matrix cracks in continuous fiber reinforced
laminates [6-8]. Only two attempts [13,14] have been made to extend the
concept to include interply delaminations as well as matrix cracks.

This paper is a comprehensive survey of the model development research of
the writers. The emphasis 1is placed on describing the experimental
development of damage under fatigue loading and the application of the model
to predict the response of the damaged laminate. While the model is
completely documented herein, the detailed theoretical developments are given
elsewhere [5].

EXPERIMENTAL PROGRAM

There were three objectives of the experimental program. These were to
observe and document the progression of damage in laminated composites when
subjected to a tension-tension fatigue loading; establish fundamental damage

growth law data and strain energy release rate data required to specify the




material constants in the model; and to generate experimental results for
comparison to the model predictions of the damage-dependent engineering
moduli. The material system selected for study was graphite/epoxy, AS-
4/3502. A comprehensive data base has been generated for a variety of cross-
ply and guasi-isotropic laminates and a limited data base is also available
for several angle-ply laminates.

The AS-4/3502 laminate panels were fabricated by a standard pre-preg tape
layup and hot press curing procedure. The panels were cured according to the
curing cycle recommended by the tape vendor. The following lamina properties
were measured: Ey, = 21.0x10% psi, Ep, = 1.39x10% psi, Gy, = 0.694x108 psi
and vyp = 0.310, where the subscript 1 refers to the fiber direction and 2
refers to the transverse direction. The fiber volume fraction was measured to
be approximately 65% and the average per ply thickness was 0.0052 in.

A1l fatigue tests were conducted by an MTS 880 computerized testing
system. The fatigue tests were run in load control at R = 0.1 and at a
frequency of 2 hz. The maximum stress was typically 70-75% of the laminate's
ultimate strength of the laminate. In most tests, a 1.0 in. gage length
biaxial extensometer was used to simultaneously measure axial and transverse
strain. In some instances only the axial strain was measured by a uniaxial
extensometer. While the dynamic modulus was monitored continuously, the
"static" axial modulus and Poisson's ratio of the laminate were determined at
various intervals throughout the test by interrupting the cyclic loading and
running standard monotonic tensile tests. At these same intervals, the damage
state was documented by x-ray radiography and edge replication. A few
selected specimens were destructively examined by sectioning and viewing in
the scanning electron microscope to better understand the local damage states.

The tensile test coupons were 1.0 in. wide and 11.0 in. long. Epoxy end
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tabs were used to minimize the local effects of the wedge-action friction
grips. Since 1.0 in. gage length extensometers were used to measure the
strain in the 1.0 in, wide specimens, the cross-sectional area of the local
volume was taken to be 1.0 inz. Therefore, the damage evaluations
characterized the damage state in the 1.0 in. x 1.0 in. gage length region
over which the damage-dependent strain waﬁ measured; Whenever the damage
state is quantified herein, it will be understood to be for this 1.0 in2
region:
EXPERIMENTAL CHARACTERIZATION OF FATIGUE DAMAGE

The first mode of damage to develop in the typical cross-ply laminate was
matrix cracks in the 90° plies. Extensive matrix cracking typically developed
during the first loading cycle. Matrix crack saturation in the 90° plies
occurred early in the fatigue life with very little additional crack formation
thereafter. The second mode of damage was matrix crack formation in the 0°
plies. These so-called axial splits began to develop at about the same time
that the matrix cracks saturated in the 90° plies. After a period of matrix
crack growth in the 0° plies, delaminations began to form at the intersection
of the crossing matrix>cracks in adjacent plies. Continued cyclic loading
resulted in a growth and coalescence of the delaminations. Fiber fracfure
also occurred in regions localized near the matrix cracks in adjacent plies.
Extensive fiber fracture could not be readily observed nondestructively and no
additional damage modes were observed prior to catastrophic failure of the
specimen. This progression of damage is illustrated in Fig. 1 by the series
of x-ray radiographs of the [0,/90,]. laminate. Figure 2 shows a photographic
enlargement of the fully developed damage state in the [02/902]s laminate
taken at 400,000 cycles with Sy, at 75% of §, 1. Figures 3 and 4 present

similar information for the l0/9021s laminate with the fully developed damage




state taken at 1,003,000 cycles with Syay at 71% of Sy 1. Finally, Fig. §
shows the fully developed damage state in a [0/903]s laminate taken at 200,000

cycles with S at 73% of SULT'

max

The x-ray radiographs of Figs. 2, 4 and 5 show two fundamentaily
different damage states. Notice that the axial splits in the [0,/90,]
laminate, Figs. 1 and 2, are continuous throughout the photographic field of
view. Also, the delaminations tend to grow in an axial direction along the
splits. On the other hand, the axial splits in the 10/9021s and [0/903]S
laminates, Figs. 3-5, are not continuous and typically terminate in the
photographic field of vision. Also, these splits tend to develop across the
laminate width prior to exhibiting extensive axial growth. The delamination
patterns are somewhat similar and tend to form at adjacent crossing crack
locations across the specimen width prior to growing and coalescing axially.
This pattern is clearly illustrated in Fig. 5. The differences in these
damage growth patterns may be quite important when developing damage growth
laws and can be qualitatively explained by the differences in the local stress
states of these laminates [15].

The progression of damage in quasi-isotropic laminates also originated
with matrix cracks in the 90° plies followed by matrix cracking in the 45°
plies. While the matrix cracks in the 90° plies appear to saturate, this was
not observed to be the case in the 45° plies. Also, unlike the 9C° plies, the
matrix cracks in the 45° plies do not typically extend completely across the
plies and tend to form in local patterns. This is illustrated in the x-ray
radiograph, Fig. 6, of a [90/:45/01S laminate where many short cracks in the
-45° plies lie along the longer cracks in the adjacent +45 plies. It is also
obvious from Fig. 6 that extensive edge delaminations developed rather than

interior delaminations at matrix crack crossing points. This same type of




damage pattern occurred in the [0/:45/90]¢ laminate as shown in Fig. 7. In
both laminates, catastrophic failure precipitated by the massive free edge
delaminations occurred prior to the observation of interior delaminations at
crossing cracks. This may be an important observation relative to the
development of the damage growth laws. However, once the delaminations are
present in the local volume there may be no fundamental difference between the
effect of free edge induced delaminations and interior delaminations on damage
dependent laminate properties.

The axial modulus was observed to decrease with increasing damage in all
laminates studied herein. The cross-ply laminates typically exhibited a rapid
rate of change in the modulus while the matrix cracks formed in the 90° plies;
whereas after saturation the rate of modulus degradation was quite slow while
the axial splits and delaminations grew. Just prior to fracture the modulus
was observed to change rapidly. This is probably due to extensive coalescence
of delaminations and fiber fracture. The quasi-isotropic laminates exhibited
a similar pattern, although somewhat more dramatic changes in the modulus
occurred with the development of the free edge delaminations. Quantitative
values of axial modulus and Poisson's ratio will be given in a later section

when the model predictions are compared to the experimental results.

MODEL OEVELOPMENT
The writers have developed a model that predicts the response of
laminates with both matrix cracks and interior delaminations such as the
damage states described in the previous section. This problem is complicated
by two factors. First, because these two damage mechanisms are oriented
differently, they require two separate tensor-valued damage parameters.

Furthermore, the mechanics of these two damage modes are substantially




different. The matrix cracks may be assumed to be statistically homogeneous
over each ply in a small local volume element. Therefore, classical local
volume averaging may be used to obtain this damage parameter. On the other
hand, delaminations are not statistically homogeneous in the z coordinate
direction. This requires that a modification be made to statistical averaging
techniques. Although statistical homogeneity is assumed in the x and y
coordinate directions, a kinematic constraint similar to the Kirchhoff-Love
hypothesis is applied in the z direction. The resulting damage parameter is a
weighted measure of damage, with delaminations away from the neutral surface
causing a greater effect on laminate properties.

The model development proceeds from the assumption that all material
inelasticity is contained within small zones surrounding the microcracks. The
effect of matrix cracks on ply level constitutive gquations is accounted for
via the local volume average of the diadic product of the crack opening

c

displacement vector us and the crack face normal n§

1
J-v—funds (1)
where V| is the local volume for which cracking can be considered
statistically homogeneous, and Sc is the surface area of matrix cracks in
Vi . For matrix cracking, V_ is typically one ply in thickness. The ply level
stress~strain relations are therefore given by

= M )

955 = Cijka ey = okg (2)

where C1jk2 is the elastic (undamaged) modulus tensor.

In order to account for interply delamination the following kinematic




assumption is made (See Fig. 8.):

u(x,y,z) = u®(x,y) - 218° + H(z-zk)eE] + H(z-zk)uE (3)
v(x,y.2) = VO(x,y) - 2[4 + H(z-2,) wEl + H(z-zk)vE (4)
and

wix.y,2) = w2(x,y) - H(z-z, )we (5)

where u and v are components of the in-plane dispiacement. w is the out-of-
plane displacement, and H is the Heavyside step function. Furthermore, 8 and
represent rotations of the midplane. The quantities with superscripts o are
undamaged midsurface values, and quantities with superscripts D are caused by
interlaminar cracking. Finally, a repeated index k is assumed to be summed
from one to the total number of delaminated ply interfaces.
Employing standard laminate averaging techniques will result in the
following laminate equations
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®34 ®54
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2 L e Bt 3 k

where {N} and (M) are the resultant forces and moments per unit length
respectively, and (aM)k and {aE} represent the damage due to matrix cracking
and interply delamination, respectively. Furthermore, n is the number of
plies, and d is the number of delaminated ply interfaces, as shown in Fig. 9.
The internal state variable for delamination, {aE}. is obtained by
employing the divergence theorem on a local volume element of the laminate.

The resulting procedure gives [13]

0 .

of; = &= [ Wl ds (8a)
Li S,

D _ 2 D
Li S,

D D

a3 = 7= [ udnds (8¢)
Li SZi

D

agi =x [ dnds (84)
L B

2i




o, = -};[ Sé 80n_ds (8e)
2i

where the subscript i is associated with the ith delaminated ply interface.
Furthermore, V4 is equivalent to tiAL- where tg js the thickness of the two
plies above and below the delamination, as shown in Fig. 10. By definition,
the z component of the unmit normal, Nys is equivalent to unity.

Furthermore, the matrices {[Q] with subscripts k are the standard elastic
property matrices for the undamaged plies. The matrices [Q] with subscripts i
apply to the ith delaminated ply interface. They represent average properties

of the plies above and below the delamination. These are described in further

detail in reference 13.

Determination of E and v .

N AT

for the Mixed Damage Mode

Now, suppose that one is interested in modeling stiffness loss as a
function of damage state. In order to do this, it is necessary to construct
the (stacking sequence independent) material parameters developed in the
previous section. The 1loading direction engineering modulus, E,, and

Poisson's ratio, uxy, of the laminate are defined as

L
Ex=t 3¢ (9)

v, 5 ——d— (10)

where t is the laminate thickness.

For the purpose of comparing the model predictions to experimental

10




results, we will confine this development to the case of a symmetric, balanced
laminate with delamination sites symmetrically located with respect to the
laminate midplane. For this special case, {x})=0 and the fourth term in
equation (6) is zero. Furthermore, a?1=0 and the third term in equation (6)
is the same for both delamination sites. Substituting equation (6) into

equations (9) and (10) results in the following expressions for £, and v

Xy
1 n aox 2 aag aag
Ee =7 0, Q) (1 - 50+ 2() Q) Q55 ) (1)
k=1 X X
1 n aa:: 2. = aag _ Bag
o kZI Q) (1 - 5770y + 2RV Q575+ Q)
v, = —— s £ z (12)
Xy 1 g 2o o Bug 3 Bag
= Q) (1 - =), + 25 Q,, = + e
N i 22k aey k n’\~24 acy 25 3ey
where it is assumed that all plies have the same thickness so that
z -2,y * tp1y (13a)
Sy .1 (13b)
t " n
t
1 _2 .
T Tn (13¢)
Furthermore,

_ O T, Q3 Yy s Oy
Q= 19, 0 Q3 0 U5 Oy (14)
Qe Q6 Q36 Qg Qs Qg
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It has been previvusly shown [13] that

=T B
g - Jufu (15)
15 €L -Q-T _ -GB
xz a1~
. =T -8
R S 1. (16)
I
yz 12 12
=T B
. - dafa (17
25 €L b—T -GB
xz %21 Q1
and
=T B
~ N Q,,Q

€ T =T =8
Lz Q2 - Oy

where the superscripts A and B designate the properties of the ply immediately

above and below the delamination, respectively.

Determination of Internal State Variables

Implementation of equations (11) and (12) to predict the damage degraded
laminate moduli requires the specification of the partial derivatives of the
internal state variables with respect to strain for a given damage state. In
the absence of growth laws, the damage state must be determined
experimentally. Expressions for the internal state variables have been
previously developed by the authors [6] by employing energy principles. In
the original constitutive theory formulation [5] the local energy 1loss

contribution to the Helmholtz free energy is directly related to the internal

12




state variables as follows:

c _ '
Ul = Ijjeqey + HOTLS (19)
where contracted notation is employed. Furthermore, the local energy loss is
also directly related to the fracture mechanics based strain energy release

rate for crack creation during load-up

C=$_ j +G”)a5+ LsJ’(GD) ds (20)
M D

where GIM and GII are the mode I and II strain energy release rates for
matrix cracking, Gp s the strain energy release rate for internal
delaminations, Sy is the matrix crack surface area, and SD is the delamination
surface area. Neglecting the higher order terms and equating equations (19)
and (20) wrovides a direct relationship between the internal state variables
and the damage state. Therefore, the internal state variables required by
equations (11) and (12) may be specified for a given damage state provided
appropriate expressions for the strain energy release rates are known.

In the case of matrix cracking in cross-ply laminates where only the

opening mode of fracture is involved the authors have developed the following

expression
M E £
day 21 m (p+q) *0 ( X1 - 1) (21)
3c 2 q E E
X 22 Xn |S
0 M1

where m is the number of consecutive 90° plies, p is the number of 0° plies, q
is the number of 90° plies, Ex is the initial undamaged modulus, and Ex

0 1
is the damage-degraded modulus corresponding to matrix crack damage state
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S The term in the parentheses was determined experimentally from tests

M. *
1
on a [0/90/0]¢ laminate and is given by

= 0.99969 - 0.0€1607 S + 0.04623 52 . (22)
Xg lS
Finite element studies have shown that the effects of adjacent layer
constraint on the energy released by the 90° layers is a second order effect

[16]. Therefore, by using the following second order tensor transformation

- M M

a I a
—loa 4 a4 —B (23)
e = ip Jp mrons  3e.

where no bars refer to the crack coordinate system and the over bars refer to
the laminate coordinate system, equation (21) is generally applicable to
matrix crack damage in any ply of any laminate stacking sequence.

In the case of off-axis plies, other than 90°, the tensor transformation
law given by equation (23) also requires the determination of aaTzlaelz for
matrix crack damage. This damage parameter is related to shear deformation at
the ply level which gives rise to the sliding mode of relative crack face
displacements. Considering a [:45]2s laminate where each ply is more-or-less

in a state of pure shear equations (19) and (20) reduce to [16]

12, 1. 1o, Su (20
3€, (Go)g  Sexp

where (Gyjp)gxp is interpreted as the effective shear modulus for the damaged

ply and is computed by

3
_ X
(Gyo)exp = 3 - (25)

€
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(615 gxp/(6y5)g = ©.822 for Sgyp corresponding to 21 cracks per inch in each
ply of the ([#45],.. Since the plies of the [t45],; are in pure shear,
expression (24) may be used to determine 3“12/3512 for any ply with matrix
crack damage. The fiber (crack) orientation of the cracked ply is accounted
for by the coordinate transformation given by equation (23).

The delamination internal state variable was determined from energy
principles as well, except 0'Brien's [17] strain energy release rate model was
used rather than experimental results. Since O'Brien's model assumes that the
strain energy release rate is independent of the size of the delamination, the

internal state variable is linear in delamination surface area. Therefore,

S

D *

3a (E, - E)
3 .

= - (S

n_"o
Y3 2 =
X Qs

D, (26)

where n is the number of plies in the laminate, SD is the delamination area
and S is the total interfacial area in the local volume. E* is the modulus of

the sublaminates formed by the delamination and is given by
d
y E.t, (27)

where d is the number of sublaminates and t is the laminate thickness. By

similar reasoning,

D (€ -
y S
2 0_ =Y

(28)
y %4

Finally, as a first approximation for the cross-derivatives in equations (11),

and (12), we have
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(29)

(30)

(31)

M M
3a, _ 512 3a,
acy 522 acx

D D
3agq ) 312 3(:3
aey S22 3€X

0 D
302 - Slz 303
3e S11 3,

where Sij is defined by the following undamaged laminate stress-strain

relationships using the first term of equation (€)

312 =

(32)

(33)

(34)

As an example, consider the case of cross-ply laminates where the delamination

site is at a 0/90 interface. Equations (11) and (12) reduce to the following

simplified forms

M

ST S S i S PSR Al Yol 1Y
X Xg nEXo k1 117k aex k 2 Exo S
3 S
_ _ P 22 q D
Uxy © "xyol1 2(5 E; it B * s )

where Ell’ E12 and vy, are the standard iamina properties.
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COMPARISON OF MODEL PREDICTIONS TO
EXPERIMENTAL RESULTS

While the damage-dependent laminate analysis hode1 may be used to predict
any of the effective engineering moduli of a laminate, experimental results
are only available for the axial modulus and Poisson's ratio. Therefore, the
general utility of the model will be demonstrated by comparing model
predictions to experimental results for E, and Vxy for the fully developed
damage states 1illustrated in Figs. 2,4,5-7. The delamination interface
location was determined experimentally and the delamination area was estimated
from the x-ray radiographs using an optical planimeter procedure. In both the
model analysis and data reduction, it was assumed that the delamination sites
were symmetrically located about the laminate midplane and contained the same
delamination surface area.

The bar chart of Fig. 11 compares the model predictions to the
experimental values of the engineering modulus, Ex, for combined matrix
cracking and delamination. The delamination interface location and percent of
delamination area are listed in the figure underneath the laminate stacking
sequence. As can be seen, the comparison between model results and the
experimental results is quite good. Some limited results for Poisson's ratio
are given in Fig. 12 using the same bar chart format. With the exception of
the [0/902]S laminate, these results are also quite good. The experimental
value for the [0/902]S laminate {s quite suspicious since this 1laminate
exhibits a much larger change in Poisson's ratio than the other laminates
without a corresponding difference in the delamination surface area. It
should be noted that values of Poisson's ratio for the quasi-isotropic

laminates are not available.
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SUMMARY AND CONCLUSIONS

The authors have formulated a constitutive model for laminated composites
with both matrix cracks and delamination damage. The model is based on the
concept of continuum damage mechanics and uses second-order tensor valued
internal state variables to represent each mode of damage. The internal state
variables are the local volume averaged measure of the relative crack face
displacements. The local volume for matrix crack damage is at the ply level,
whereas the local volume for delamination damage is at the laminate level.
Therefore, the damage-dependent constitutive mode) takes the form of laminate
analysis equations modified by inclusion of the internal state variables.

This paper demonstrates the applicability of the model to predict the
degraded engineering modulus, £

and Poisson's ratio, v of quasi-

X xy’
isotropic and cross-ply laminates of graphite/epoxj. The comparison between
mode) predictions and experimental results is very close. The authors submit
that the good agreement reported herein supports the validity of the model

formulation and the physical interpretation of the internal state variables.
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Fig. 6 Enlarged X-ray Radiograph of Damage in a [90/~:45/O]S Laminate at
50,000 Cycles with Smax = 73% of SULT
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Abstract - In this paper a damage model is presented for laminated continuous
fiber composites. Because of the layered anisotropy of the medium of
interest, at least two distinct orthotropic damage modes are observed in
laminated composites: matrix cracks and interply delaminations. Oue to
statistical inhomogeneity in the coordinate dimension normal to the plane of
the laminate, second order tensor internal state variables are constructed
which represent a weighted average of both matrix cracks and delaminations.

[t is shown herein that linear elastic fracture mechanics may be utilized
to construct the parameters necessary to characterize the material properties
in the stress-strain-damage constitutive equations. The resulting model is
then independent of the stacking sequence and ply orientation in the

laminate. Recently obtained comparisons of model predictions to experimental

results reported herein support the validity of the model.




1. Introduction

The first application of continuum damage mechanics is attributed to L.M.
Kachanov {8]. In this method it is recognized that the exact analysis of a
multiply connected domain with numerous microcracks is hopelessly complex.
Therefore, the effects of these microcracks on macrophysical response are
reflected via one or more internal state variables [14] called damage
parameters. The initial use of damage mechanics appears to have been a
logical one. It was observed that in metals classical plasticity theory
breaks down when significant grain boundary sliding and/or microcavitation
occur because the initial elastic properties are not observed on unloading
[15].

In the last twenty years there has been an incredible expansion of
research in damage mechanics, as evidenced by two recent review articles
(5,11,12] and the publication of the first textbook devoted entirely to damage
mechanics [9]. However, as pointed out in reference 12, although substantial
research has been performed on metals, concrete, and geologic media, very
little research has been detailed on laminated composite media. In fact, to
these authors' knowledge, only three concerted efforts have reached the open
literature at the time of this writing. These are due to Talreja [16-20],
Allen, et al. [1-4], and Weitsman [21]. In fact, the first two authors of
this paper became acquainted with Dr. Talreja in the summer of 1983, while the
latter was on sabbatical at the Virginia Polytechnic Institute and State
University. At that time Dr. Talreja was completing his first paper on the
subject, while the current model was just beginning to be formulated. Due to
discussions at that time, the current model owes some credit to the work of

Dr. Talreja. Doubtless there are numerous other applications of damage




mechanics to laminated composites on the threshold of making their way into
the literature. However, we are unaware of them at the time of this writing.

The principal difficulty in laminated composites, unlike metals and
concrete, is that the layered orthotropy of the medium produces multiple
damage modes, each possessed of some degree of anisotropy. Therefore, whereas
it is often sufficient to deal with a single isotropic (scalar valued) damage
tensor in initially isotropic and homogeneous media, this simplicity cannot be
utilized in laminated composites. Furthermore, each of the damage mechanisms
is interrelated and extremely difficult to distinguish experimentally.
Finally, the damage may not be considered to be statistically homogeneous
through the laminate thickness. Nevertheless, the application of continuum
damage mechanics to laminated composites appears to be a fruitful quest
because the most obvious alternative would be to attempt to solve a highly
anisotropic multiply connected boundary vaiue problem.

An example of a composite laminate with two distinct modes of damage is
shown in Fig. 1 [7]. In this example, there are matrix cracks in the
crossplies and delaminations at the ply interfaces. Note that the cracks are
oriented and statistically nonhomogeneous in the out-of-plane coordinate
direction. Experimental observation [6] indicates that the matrix cracks are
load induced, whereas the delaminations are driven by stress concentrations at
the matrix crack tips. Therefore, significant interaction of the damage modes
is observed. Although not shown in the figure, there are often additional
damage modes observed prior to component failure, including fiber-matrix
debonding, fiber fracture and fiber crimping and/or buckling in compression.
An excellent review of the genesis of these events is described in further

detail in reference 19.




The ultimate objective of any continuum mechanics model is to design away
from failure. [In the sense that laminated composites fail due to a complex
sequence of damage events, it is essential to capture the important features
of the damage process in order to accurately predict failure. Obviously this
will be a complex task in laminated composites, but, as Einstein once put it,

a good theory should be as simple as possible but no simpler than that.

2. Model Development

The authors have been developing a model for predicting the constitutive
behavior of laminated continuous fiber composites [1-4]. This model utilizes
the concept of continuum damage mechanics, in the sense that the effects of
microcracks are reflected via internal state variables (ISV's) in the
constitutive equations, rather than treating each microcrack as a separate
internal boundary. Ffurthermore, the model is phenomenological because only
the average macroscale effect of microcracking is modelled rather than the
effect of each individual crack. Because cracking is not statistically
homogeneous in the coordinate direction normal to the laminate, statistical
weighting is necessary in this direction, and this is accomplished via
kinematic constraints. Therefore, the constitutive equations are laminate
equations, rather than standard stress-strain equations.

A continuum damage model must contain four essential ingredients in order
to be complete: 1) stress-strain-damage equations; 2) damage growth laws for
the damage ISV's; 3) a failure function describing local failure in terms of
the damage ISV's and observable state variables; and 4) an algorithm for
solving boundary value problems in which the state is nonhomogeneous. If

steps one through three can be accomplished accurately, then step four is




relatively straightforward, involving a procedure not unlike extending an
elastic algorithm to include plasticity. Steps two and three tend to be the
most complex, especially for laminated composites. Although there has been
some research on these two components of the model, the authors would consider
this work exploratory at this time. The subject of the current paper is step
one. The fundamental difficulty in this procedure is to develop a model which
is independent of ply orientation and stacking sequence. Of course, the
ultimate goal of this research is step three, to predict failure as a function
of the current damage state.

Research is currently underway to extend the model to predict the
response of laminates with both matrix cracks and interior delaminations [3],
as shown in Fig. 1. This problem is complicated by two factors. First,
because these two damage mechanisms are oriented differently, they require two
separate tensor-valued damage parameters. Furthermore, the mechanics of these
two damage modes are substantially different, The matrix cracks may be
assumed to be statistically homogeneous over each ply in a small local volume
element. Therefore, classical local volume averaging may be used to obtain
this damage paivameter. On the other hand, delaminations are not statistically
homogeneous in the z coordinate direction. This requires that a modification
be made to statistical averaging techniques. Although statistical homogeneity
is assumed in the x and y coordinate directions, a kinematic constraint
similar to the Kirchhoff-Love hypothesis is applied in the z direction. The
resulting damage parameter is a weighted measure of damage, with delaminations
away from the neutral surface causing a greater effect on laminate properties.

The model development proceeds from the assumption that all material
inelasticity is contained within small zones surrounding the microcracks. The

effect of matrix cracks on ply level constitutive equations is accounted for
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via the local volume average of the diadic product of the crack opening

displacement vector u? and the crack face normal ng {11]:
Ms %— [ u%nSds (1)

where V| is the local volume for which c¢racking can be considered
statistically homogeneous, and S. is the surface area of cracks in V. Ffor
matrix cracking V| 1is typically one ply in thickness. The ply level stress-

strain relations are therefore given by

i M
95 = Cigkaleke = %) (2)

In order to account for interply delamination the following kinematic

assumption is made (See Fig. 2.):

u(x,y,2) = u®(x,y) - z[8° + H(Z-zk)eEl + H(2~zk)UE (3)
v(x,y,2) = VO(x,y) - 2140 + H(z-z,) wE] + H(z—zk)vE (4)

and
wi(X,¥,2) = wo(x,y) - H(z-zk)wE (5)

where u and v are components of the in-plane displacement and w is the out-of-
plane displacement and H is the Heavyside step function.
Furthermore, 8 and y represent rotations of the midplane. The quantities
with superscripts o are undamaged midsurface values, and quantities with
superscripts D are caused by interlaminar cracking.
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Employing standard laminate averaging techniques will result in the

following laminate equations [3]

_ 0 o, 1 7 2 2 ‘
(N} = Z [Q]k (Zk - zk_l) {eL} - E Z [Q]k (Zk - zk_l) {KL)
k=1 k=1
0 0
0 0
d o) d+1 _ 0
+ '21 [l 5 + 121 (z; -z, 11 ¢
1= %2 = %4
D D
*3i 5i
0 0
A M
- z [Q]k (Zk - Zk-l) {a )k (6)
k=1
n n .
3 3
=3 51l (- g (-3 L1 (g - ) )
k=1 k=1
0 0
0 0
D
d aq - d+1 0
= 2 °li = 2
* .Zl @3l 5 o1 IR - 7))
= %24 ) %44
D D
*3i Y
0 0
LoTa), @2 - 2, WM (7)
T7 L T kT k- T




where {N} and (M} are the resultant forces and moments per unit length
respectively, and {aM}k and {aE} represent the damage due to matrix cracking
and interply delamination, respectively. Furthermore, n 1is the number of
plies, and d is the number of delaminated ply interfaces, as shown in Fig. 3.
The internal state variable for delamination, {aE}, is obtainea by
employing the divergence theorem on a local volume e’'2ment of the laminate.

The resulting procedure gives [3]

- 2 0
21
D _ 2 .0
ani = oy sI v;n_ds (8b)
21
D _ 2 D
21
D 1 D
agy = K[ g v;n_dS (8d)
32
D 1 D
agi = q JB. Binzds (8e)
32

where the subscript i is associated with the ith delaminated ply interface.
Furthermore, UE is equivalent to t;A , where t; is the thickness of the two
plies above and below the delamination, as shown in Fig. 4.

Furthermore, the matrices [Q] with subscripts k are the standard elastic
property matrices for the undamaged plies. The matrices [Q] with subscripts i
apply to the ith delaminated ply interface. They represent average properties
of the plies above and below the delamination. These are described in further

detail in reference 3.




3. Determination of £, for the Mixed Damage Mode:

Now, suppose that one is interested in modeling stiffness loss as a
function of damage state, In order to do this it is necessary to construct
the (stacking sequence independent) material parameters developed in the
previous section. To dc¢ this, consider a symmetric balanced laminate so
that (e} = {0} and define the loading direction engineering modulus of the

laminate to be

AR g
Differentiating equation (6) yields
;
£ k§1(°11)k -5 k21(011)k (Z:T)k & 121[(015)12+ (015)?]t1 ::%i
d+1 2l .
" LU- 21-1(015)?_1+ 2,(Q5) ) 3L (10)
where

Q1 Q2 U3 Qg s Qe
@l = Qp G Q3 Uy Qg Uy (11)

Qe Q6 %6 YU e 96
and the superscripts T and B represent the plies above and below the
delamination, respectively.
For the case where delamination sites are symmetrically located about the
laminate midplane and with equal damage, the last term in equation (10) is
zero.

Thus,




21
Ex " n

ne-13

d .
X 1 i
K1 Q) - aex)k i Z [ 2 Pty 3¢ (12)

Now consider a single delamination site (d=1)

M T B D
10 da, by (Qyg)y + (Qpg)y 303
Beomn LA - ket e 2 e, (13)
where t; = thly and t = ntp]y for all plies having thickness tp1y. Finally,
it can be shown that
T B YT ' \B
(Q15)1 + (015)1 _ (Qll)l + (011)1 14
5 = 5 (14)
where
Q' = Q cos4e + 2 (Qq, + ZQ ) sinze cosze +Q sin4e (15)
11 11 12 66 22
Therefore, £, reduces to
M D
10 3ay 1,2 T v B, %3
Emn L Qe - 5w Q)+ Qupyl 5 (16)

I[f we now consider the energy loss associated with one symmetric
delamination site and ignore any energy loss associated with crack

interactions, the energy 1oss in the local volume is given by

D

c _ 0
UL = Il6 €L1 QL6 + H~00T. (17)

10




Neglecting the higher order terms as was done in the original constitutive

model formulation [1,2], the local energy loss may be expressed in laminate

form as

c_,D D

u = Ilﬁex ag (18)
where

D 1,5 T = B

By restricting the energy loss to that associated with crack creation during
loadup, we may use fracture mechanics concepts to express the local energy
loss as follows

1
uf = -y [ GydS (20)

—
(Ve

where V| is given by tS, t is the laminate thickness, S is the total area of

the interface, Sy is the delaminated area (Sp < §), and Gy is the delamination

strain energy release rate. Equating these two expressions for uE yields the

following general expression for the delamination ISV

= - 5 L—— [ Gyds (21)
tSe S

16 X D

We now need an expression for the strain energy release rate of

delamination. As a first approximation we will use 0'Brien's strain energy

release rate model [13] which was developed for free edge delaminations. This

model has the advantage of accounting for both the laminate stacking sequence

and the delamination site(s) without requiring laminate specific experimental

data. The strain energy release rate is given by
-£) (22)

11
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where Ejam is equivalent to E ., t is the laminate thickness, d is the number
of sublaminates formed by delamination(s), E; equals E, for the ith

sublaminate, t; is the thickness of the ith sublaminate, and
d
z E.t. (23)

Since  Gp js assumed to be constant in S in the previous

expression, ag reduces to

2
D _ 1 ext * SD
ay = - ID . [ 5 (Ex - £)] 3 (24)
16 * ©x

Substituting for 1?6 and rearranging gives

(E. - E) s
8- gD &
(@) + @]

or
D * ‘
304 _n (EX -£) _ SD
%2 T 5§ (26)
X [015)1 + (015)1]
Now substituting expression (26) into (16) yields
M
1 n aux 1 * SD
= n L Qi - 52 7 (B - B (27)

By dividing by the initial undamaged modulus, £ _, we obtain the following

X0
expression for combined matrix cracking and delaminations:

12




] | L] | L ] L T Ul T I T e S .

m
—
3

a1, E (SD (28)
E o e L QG k2 (-0

This expression is valid for the following case: 1) A symmetric, balanced
laminate; 2) two delamination sites located symmetric with respect to the
laminate midplane with equal damage at each interface; 3) the strain energy
release rate is not a function of the delamination surface area; 4) there are
no energy losses associated with crack interaction; and 5) the ISV's are
linear in strain (ex) on unloading and subsequent reloading prior to new
damage formation.

An expression for the ISV for matrix cracking was previously developed in

reference 2. For matrix crack damage in a single 90° ply,

=

. % (p+q) Fxo (:
de q '
X 122 X0 SM

x1

x

- 1) (29)
1

where n is the number of consecutive 90° plies in the 90° layer, p is the
number of 0° plies, g is the number of 90° plies in the laminate, Exl/Exo was
determined experimentally for the [0,90,0]S laminate containing a single 90°
layer, and SMl is the matrix crack surface area at time t1-

Equations (26) and (29) provide quantitative values of the ISV for
delaminations and matrix cracks, respectively, and require only the value of
the current damage state, Sy and SMI. Equation (28) may thc~ be used to
predict the damage-dependent loading-direction modulus of the laminate at the
current damage state. The mathematical expressions explicitly account for the
effects of laminate stacking sequence, relative matrix crack damage in each

ply, and the delamination interface site. Aside from the standard laminate

analysis material constants, the damage model only requires the experimental

13
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determination of the current damage state. (Research is currently underway to
establish ISV damage growth laws which will predict the values of the ISV's

directly from the loading history of the material.)

4. Comparison of Model Predictions to Experimental Results

The suitability of the above damage-dependent laminate analysis equations
must be assessed by comparing displacements predicted by the damage model to
experimentally measured values. This is accomplished herein by comparing
mode! predictions to the damage-degraded engineering modulus, E,, of several
laminates determined from tensile coupon tests. A limited number of test
results have been obtained for AS4/3502 graphite/epoxy laminates with a quasi-
isotropic and several cross-ply stacking sequences. The combined matrix
crackirng and delamination damage modes were generated by tension-tension
fatigue loading (R=0.1) at 2 Hz and the engineering modulus of the laminate
was measured by a 1.0 in. extensometer.

A comparison of the model prediction of Ex to experimental results is
presented ir Table 1 for [02/90215, [0/903]S cross-ply laminates, and for
[0/t45/90]S and [90/t45/0]S quasi-isotropic laminates. The damage degraded
modulus has been normalized by the initial undamaged modulus. X-ray
radiographs of the combined-mode damage state are shown in Figs. 5 through 38
for the laminates listed in Table 1. The comparison between the theoretical
and experimental results 1is quite good. While this is a very limited
comparison, the results are very encouraging because the stiffness loss in
the cross-ply laminates is primarily due to matrix cracking, whereas the

stiffness loss in the quasi-isotropic 1laminates is primarily due to the

14
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delaminations.

5. Summary and Conclusions

The authors have constructed a continuum damage model for laminated
continuous fiber composites. This model utilizes second order tensor-valued
internal state variables to account for both matrix cracking and delamination
at the sub-laminate level in such a way as to produce a stacking sequence
independent model. The input properties may be obtained from a single
(0,90,0] specimen.

The model has thus far been shown to be accurate in predicting both in-
plane and out-of-plane stiffness 10ss in crossply specimens with both vertical
and curved matrix cracks. Efforts are currently underway to compare model
stiffness predictions to experiment for quasi-isotropic laminates with both
matrix cracks and delaminations. The initial comparisons are quite
encouraging. Research is also underway to develop stacking sequence
independent ISV growth laws for matrix cracking and delaminations.

The ultimate goal of this research is to develop a model capable of
predicting failure of a component subjected to loads resulting in stress
gradients. Toward this end, it 1is believed by these authors that the
essential ingredients are now in place for constructing a failure function
which describes fiber fracture as a function of matrix cracking and

delamination.
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Table 2 Comparison of Model Predictions to Experimental Results
with Matrix Cracks and Delaminations

LAMINATE STACKING
SEQUENCE

NUMBER OF CRACKS
PER INCH IN 90° LAYER

DELAMINATION INTERFACE
PERCENT DELAMINATION

3
fﬁ EXPERIMENTAL
X

[s]

E
El— MODEL PREDICTION
X

o]

[05/90,] ¢
54
0/90

47.3

0.949

0.939

18

[0/905]¢
38
0/90

17.2

0.910

0.918

[0/£45/901 [90/%45/0)

44 18
-45/90 +45/-45
57.0 52.0
0.888 0.860
0.878 0.863
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ARBSTRACT

A damage-dependent constitutive model for
laminated composites has been developed for the
combined damage modes of matrix cracks and
delaminations. The model {15 based on the concept
of continuum damage mechanics and uses second-order
tensor valued internal state variables to represent
each mocde of damage. The internal state variables
are defined as the local volume average of the
relative crack face dispiacements. Since the local
volume for delaminations 1{s specified at the
laminate level, the constitutive model takes the
form of laminate analysis equations modified by the
internal state variables. Model implementation is
demonstrated for E, . and v of quasi-isotropic
and cross-ply laminates. Th&Ymodel predictions are
in close agreement to experimental results obtained
for graphite/epoxy laminates.

INTRQDUCTION

It is a well established fact that composite
material systems develop extensive patterns of
microstructural damage as a result of mechanical or
environmental load history. Many composite
structures are damage tolerant because they retain
load-carrying capacity and structural integrity
after the development of microstructural damage.
The physical properties of the material system are
sltered by the damage and, furthermore, the
developmert of the damage 1s a precursor to
structural faflure. Using the concept of continuum
damage mechanics, the authors have developed a
constitutive model for fiber-reinforced laminated
composites which includes the {influence of
microstructural damage on the stress-strain
behavior of a composite structure. The 1nfluence
of the combined damage modes of matrix cracking and
delamination on the laminate engineering modulus,
E,, and Poisson's ratio, wv_., 1is the subject of
this paper. xy

The first application of continuum mechanics
1s attributed to L.M. Kachanov {1). In this method
it 1s recognized that the exact analysis of a
muitiply connected domain with numerous microcracks
is hopelessly complex. Therefore, the effects of
these microcracks on macrophysical response are
refiected via one or more internal state variables
|2] called damage parameters. The initia) use of
damage mechanics appears to have been a logical
one. It was observed that in metals classical
plasticity theory breaks down when significant
grain boundary siiding and/or macrocavitation occur
because the 1initial elastic properties are not
observed on unloading (3]. In the last twenty
years there has been an incredible expansion of
research in damage mechanics, as evidenced by two
recent review articles {4,5,6] and the publication
of the first textbook devoted entirely to damage
mechanics [7]. Although substantial research has
been performed on metals, concrete, and geologic
media, as pointed out in reference 12, very little
research has been detailed on laminated composite
media. In fact, to these authors' knowledge, only
three concerted efforts have reached the open
Viterature at the time of this writing, These are
due to Talreja [8-12), Allen, et al. {13-16], and
weitsman [17].

The authors have developed a model for
predicting the constitutive behavior of laminated
continuous fiber composites (13-16]. This mode)
uttlizes the concept of continuum  damage
mechanics. The effects of wmicrocracks are
re"lected via internal state variables (ISV's) in
the constitutive equations, rather than treating
each microcrack as a separate internal bound: y.
Furthermore, the model {s phenomenological because
only the average macroscale effect of microcracking
s modelled rather than the effect of esch
individual crack. Because <cracking 1s not
statistically homogeneous in the coordinate
direction normal to the laminate, statistical
weighting 1s necessary in this direction, and this
is accompl ished via kinematic constraints.




Iherefore, the constitutive equations are laminate
equations, rather than standard stress-strain
equations,

The objective of this research effort is to
extend the model to predict the response of
laminates with both matrix cracks and finterior
delaminations |[15], as shown in Fig. 1, This
problem s complicated by 1two factors. First,
because these two damage mechanisms are oriented
differently, they require two Sseparate tensor-
valued damage parameters. Furthermore, the
mechanics  of these two  damage modes  are
substantially different, The matrix cracks may be
assumed to be statistically homogeneous over each
ply in & small local volume element. Therefore,
classical local volume averaging may be used to
obtain this damage parameter. On the other hand,
delaminations are not statistically homogeneous in
the 2 coordinate direction. This requircs that a
modification be made to statistical averaging
techniques. Although statistical homogeneity 1is
assumed in the x and y directions, a kinematic
constraint similar to the Kirchhoff-Love hypothesis
is applied 1n the 2z direction. The resulting
damage parameter i§ & weighted measure of damage,
with odelaminations ‘away from the neutral surface
causing a greater effect on laminate properties.
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MODEL DEVELOPMENY

The model development proceeds from the

assumption that all material inelasticity

contained within small zones surrounding the
microcracks. The effect of matrix cracks on ply
level constitutive equations is accounted for via
the local volume average of the diadic product of

the crack opening displacement vector uf and the

crack face normal ng :

M )| c ¢ 1
oy - -~ f u‘anS (
o Ys,

where V, is the local volume for which cracking can
Hdered statistically homogeneous, and Sc is

be cons

the surface area of cracks in v, . for matrix
cracking, V, is typically one ply tn thickness.
The ply level stress-strain relations are therefore
given by

]
915 ® Coga Cie ~ o) (2)

In order to account for finterply delamination
the following kinematic assumpiion {s made (Se2

Fig, ¢):
Wixaya2) = Wlauy) - 216 o MGz )e)]

+ H(z-2, )] (3)

v(x,y,2) = VO(x,y) - 214% H(l-zk)vsl
* N(z-zk)ve (4)
and
0 0
wix,y,z) = w(x,y) - H(2-2, )w, (5)

where u and v are components of the in-plane
displacement ang w 1s the out-of-plane displacement
and H is the Heavyside step function. Furthermore,

8 and ¢ represent rotations of the midplane. The
quantities with superscripts o are undamaged
midsurface values, and quantities with superscripts
D are caused by iInterlaminar cracking,

Employing standard laminate averaging
techniques wil)l result in the following laminate
equations [15]

¢ o
N) = k{1101k (2 = 2,4} (e)

n
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where (N} and (M) are the resultant forces and
moment per wunit length, respectively, and

(n”)k and (oE) represent the damage due to matrix

cracking and interply delamination, respectively,
Furthermare, n is the number of plies, and d is the
number of delaminated ply interfaces, as shown in
Fig. 3.

The 1interna) state varisble for delamination,
{a; ), is obtained by employing the divergence
thedrem on a local volume element of the
laminate. The resulting procedure gives [15]

a0, - v_f; J WIn,as (82)

21

0 2 0
a0t sf vyn, a8 (80)
LY 354
0 2 D
uyy VL— 5I u‘nzds (Bc)
LR
0 1 D
S0y "R ovnss (8a)
321
0 1 0
“5i * A g 6yn, 05 (Be)
524

where the subscript 1 {s associated with the ith
delaminated ply i{nterface. Furthermore, Viy o is
equivalent 10 tA;, where ty s the thickness of
the two plies above and below the delamination, as
shown in Fig. 4.
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furthermore, the matrices {Q] with subscripts
L are the stendard elastic property matrices for

the undamaged plles.  The matrices Q]  with
subscripts | a«pply to the itn delaminated ply
Interface. They represent average properties of

the plies atove and below the delamination., These
are described in further detail in reference 18.

DETCRMINATION OF E and .  FOR THE MIXED DAMAGE
MODE L X s

Suppose that one is 1interested in modeling
stiffness 1oss as a function of damage state. In
order to do this, it {s necessary to construct the
(stacking sequence independent) material parameters
developed in the previous section, The loading
direction engineering modulus, E,, and Poisson's
rutto, "xy’ of the lupinate arce acllncd s

(9)

—_ X (10)

where t is the lamihate thickness.

For the purpose of ccmparing the model
predictions to experimental results, we will
confine this development to the case of a
symmetric, balanced laminate with delamination
sites located symmetrically with respect to the
laminate midplane. For this special case, {«}s0
and the fourth term in equation (6) is zero.

Furthermore, .‘1"-0 and the third term in equation

(6) 1s the same for both delamination sites.
Substituting equation (6) into equations (9) and
(10) results in the following expressions for E,

and uxy
M
\ n 3ul
£, =3 Q) 01 - =57)
x n kzl 117k 3, 'k
2 iuz 303
T 25 @y U5 ()
x 3
y P .': 2 § "g .0 ‘“g )
A Wy @it - T, A 14’&? 15 a‘n a
U" ! n ;." 2 5 .I? .6 'lul)
n IEI mll’l“ ° u' )t M 2‘;“ 23 u, (1} u'

where 1t 15 assumed that a)l plie. have th
thickness so that P the sane

et eyt Yy (13a)
t

ply 1

t “n {13b)

YhL o2
-k (13¢)
furthermore, damage introduces local anisotrcpy $o
that
p 9 Q3 Oy Qg O
1, =101, Q Qpy Qpp Qs Q) (19)
Qe Q6 3 T4 Qg6 Qg

1t has been previously shown | 18] that

Ty = 3 @ + Ty (1%)
Ts =2 @+ ) (16)
To = 7 @+ B (7)
pg = 3 (@ + W) (18)

where the superscripts A and B designate the
properties of the ply immediately above and below
the delamination, respectively.

DETERMINATION OF INTERNAL STATE VARIABLES

Implementation of equations (11) and (12) to
predict the oamage degraded laminate @odult
requires the specificatifon of the partial
derivatives of the internal state variables with
respect to strain for a given damage state. In the
absence of growth laws, the damage state cust be
determined experimentally. Expressions for the
internal state variables have been previously
developed by the authors [14,15) by emloying
energy principles. In the original constitutive
theory formulation (13] the local energy loss
contribution to the Helmholtz free energy fs
directly related to the internal state variables.
Furthermore, the local energy loss 1s also directly
related to the fracture mechanics based strain
energy release rate for crack creation during load-
up. Therefore, expressions for the internal state
variables have been developed from expressions for
the strain energy release rate for each dacage
mode. In the case of matrix cracking in cross-ply
laminates,

M £ £
qu 1 . lo ll
—— = m—M)-—E——:—- -1 19
w, 2 q 22(105")()
1

where m i{s the number of consecutive 90° plies, p
is the number of 0° plies, q is the number of §0°
plies, Ex Is the initial undamaged modulus, and

E‘ is tq‘e damage-degraded modulus corresgonding

to hatrix crack damage state S, . The term f{n

the parenthesis was determined ex}:erimentany froo
tests on a [0/90/0j; laminate and is given by

EX

T-l s = 0.99969 - 0.061607 S + 0.04523 Sz (20)
X
0
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finfte clement sStudires have shown that the effecte
uf edjacent layer constrainl on the energy relcased
by the 90° layers is a second order effect [19].
Tnerefore, by using the following second order
tensor transformation |19] law

M "
do = Sl
__._%J. ca_ o a_ o —BL (21)
3 = fp Jjp mr ns o

where the unbarred quantities are in the crack
coordinate system and the barred quantities are in
the laminate coordinate system, equation (19) fs
generally applicable to matrix crack damage in any
ply of any laminate stacking sequence,

The delamination internal state variable was
delermined ftrom energy principles as well, excupt
0'Brien's [20] strain energy release rate model was
used vrather than expcerimental results. Since
0'Brien's model assumes that the strain energy
release s independent of the size of the
delamination, the internal state variable is linear
in delamination sbrface area. Therefore,

O
.- (=) (22)
. H 3, 3

where n is the number of plies in the laminate, $
18 the delamination area and S 1s the tota
interfacial area in the local volume. E* {5 the
modulus of the sublaminates formed- by the
delamination and is given by

d
£ ~: J E

i=]

(23)

Lad o]
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where d 1s the number of sublamindtes and t 1s the
laminate thickness. By similar reasoning,.

0 £ -
o T =2 (24)
“y 2 624 <

Finally, as a first approximation for the cross-
derivatives in equations (11}, we assume that

M M
da . s]? 2, (25)
., —SZZ e,
“D S 300
acy 522 ac,
300 S 300

2 12 3 (27)
e, Tll e,

where SU is defined by the following undamaged
laminate ~ stress-strain relationships using the
first term of equation (6)

1 X
STt (28)
1 H
2271 'Sti (25)
N
. 1 X
S12° ¢ ", (30)

Consider the case of cross-ply laminates where
thc delamination site 1s at a 0/90 interface.
Equations (11) and (12) reduce to the following
simplified forms

1 n iul
€, =€ (1 - -;g:;— ulx Q5 0

0
1, oty S :
-3 (L -7) (3 (3)
o
3
by * Vpy 1 - 2 =2
Xy Xy notnt tee
s
+ 8 i (32)

where E.., E,, and u are the standard lamina
propertieu 12 12

EXPERIMENTAL PROGRAM

A limited experimental
conducted to verify the accuracy of the
constitutive mode! formulation. Experimenta) tests
have been conducted on tensile specimens from &
number of quasi-1sotropic and cross-ply
laminates. The material system 15 AS4/3502

graphite/epoxy with €y;21.0x10%s1 (144.8 Gpe),
Eppe1-39x10%s1  (9.58 GPa),  u ,=0.310  and
Gy2=0.694x10%s1 (4.79 GPa).  The fiver volume

fraction {s approximately 65% and the per ply
thickness 1s 0.0055 in. (0.132 mm). The loading-
direction modulus and Poisson's ratio were measured
by 2 bilaxial extensometer with a 1 in, gage
length. Damage was developed under tension-tension
fatigue at 2Hz and Re{(.]. The progression of
damage was documented by periodic examinations by

program has been

x-ray radiography and edge replication. Modulus
measurements were taken at each examination.
COMPARISON OF EXPERIMENTAL RESULTS T0 MODEL

PREDICTIONS

The comparison of model predictions to
experimental results for £, and v, ore displayed

in graphical form in the bar charts of Figs. 5 and
6, respectively. Matrix cracks in the 90° layers
are at the saturatfon damage state for all
laminates. The delamination interface location and
percent of delamination 1s listed under the
laminate stacking sequences in the bar charts. It
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should be noted that the Poisson‘'s ratio values fo-
the two quasi-isotropic laminates are not gtven
because they were not measured experimentally. The
comparison between the experimental results ang
model results 1s quite close for £, However,
there are some discrepancies ta the comparison of
Yy values. The authors attridute these

discrepancies to the difficulty in measuring
Poisson's ratio. Because Poisson's ratio is Quite
small for cross-ply leminates, the measurement fis
more sensitive to experimental error.

SUMMARY AND CONCLUSIONS

The authors have formulated a constitutive
mode) for laminated composites with both matrix
cracks and delamination damage. The model 1is based
on the concept of continuum damage mechanics &nd
uses  second-order tensor valued internal state
variables to represent each mode of damage. The
internal state variables are the local volume
averaged measure of the relative crack face
displacements. The local volume for matrix crack
damage 1s at the ply level, whereas the local
volume for delamination damage is at the laminate
Tevel. Therefore, the damage-dependent
constitutive model takes the form of laminate
analysis equations modified by i{nclusion of the
internal state varfables.

This paper demonstrates the applicadbility of
the magel to predict the oegraded engineering

rodulus, E,, and Poisson's ratio, ey of quasi-

isotropic and cross-ply laminates of
graphite/epoxy. The comparison between model
predictions &nd experimental resulls 1s very
close. The authors believe that the good agreement
reported herein demonstrates the validity of the
model formulation and the physical interpretation
of the itnternal state variables.
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ABSTRACT

A continuum damage mechanics framework is utilized herein to develop
laminate equations for layered orthotropic composites undergoing
microstructural damage. The theory is capable of modelling the effects of
both matrix cracks and interply delaminations on both the internal forces and
moments resulting at the laminate level. The two damage modes are accounted
for via second order tensor valued internal state variables which account for
the locally averaged kinematics of microcracking in each damage model.

It is shown herein that the model may be utilized to determine the
effects of microcracking on ply level stresses, and this is demonstrated for
several example cases. Finally, it is shown that the accurate prediction of
ply stresses serves as a precursor to the development of evolution laws

qoverning the growth of damage.




INTRODUCT ION

Laminated composites with non-metallic matrix material are «xnown to
undergo a substantial amount of microstructural damage, including matrix
cracking, interply delamination, and fiber-matrix debonding. Over the past
decade, numerous papers have documented the effects of this type of damage
[1,2]. This damage can be very forgiving in the sense that the cracks cause
localized and ;patia]]y variable component stiffness reduction which in turn
induces load redistribution so that structural performance is not
substantially impaired. In many materials the resulting stiffness loss is
almost inconsequential, usually less than ten percent for the axial component,
so that it is often assumed to be negligible when performing elastic stress
analyses. In addition, it is often not practical to calculate ply stresses in
“he nresence of damage since the damage may void the kinematic assumptions
(such as Kirchhoff-Love) and thus necessitate the development of highly
complex algorithms in order to calculate stresses in the damaged areas of the
component. Unstable crack growth in highly damaged areas can eventually have
a catastrophic effect resulting in component failure, usually due to fracture.
Thus, although elastic properties are not substantially degraded, small losses
in these properties ultimately cannot be ignored.

It is generally hypothesized that the growth of damage is driven by local
stresses, which are in turn affected by the damage process. Therefore,
although damage may not profoundly affect stiffness, it cannot be ignored in
the prediction of failure. The question which remains open at this time is
how much detail must be included in an attempt to model the effects of damage
on failure. Must each crack be followed from inception to ultimate arrest, or
can the effects of each crack be simplified in the model? OQObviously, a model

which follows every crack will be highly complex, since typical structural

————



components can undergo tens of thousands of microcracks prior to failure. The
current research effort attempts to simplify this problem by applying
continuum damage mechanics to the analysis of laminated composites. In this
approach, first proposed by L.M. Kachanov in 1958 [3}, it is hypothesized that
the effect of microcracks may be locally averaged on a scale which is small
compared to the scale of the structural component. Although the procedure has
been extensively utilized in the literature, it has not been applied to
laminated orthotropic media until recently. At the time of this writing, the
authors are aware of three efforts in the open literature: Talreja [4-8],
Weitsman [9), and the model discussed herein [10-15]. The current model may
well be the only one which has been utilized to model ply level stresses, so
that damage evolution laws and failure can be mode11ed.

The authors have previously developed a damage model which is applicable
to laminated composites [10]. This microstructural damage may be induced by
mechanical loads or environment such as elevated temperature. fhe model has
been utilized to predict the stiffness loss in composite crossply laminates
with matrix cracks, and these results compare favorably to experiment
[11,12]. The model has also been developed for the case of combined matrix
cracking and interply delamination [13]. The model has been recently compared
to experimental results for axial stiffness [14] and in-plane Poisson's ratio
[15] in the presence of both damage modes.

In the current paper, the model is used to predict the effects of both
matrix cracks and delaminations on ply level stresses. It is shown that the
stress distribution is substantially altered | by the damage state.
Furthermore, the predicted stresses are significantly affected by stacking
seguence. The outcome of the research is to show how the development of
damage causes stress redistribution which drives the development of new damage

moges.




MODEL DEVELOPMENT
The detailed development of the damage model has been previously
documented in a series of publications [10-15]. Therefore, in the current
paper these developments will be reviewed only in enough detail to demonstrate
the procedure for calculating ply stresses in damaged laminates.
It is assumed that the effects of matrix cracking are reflected in the

ply level stress-strain relations [11]:
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°L, U1 Q2 Y3 Qg 95 Oy L, T %xx
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L, Q2 Q Q3 By Qs 0y ‘Ly'°§y
L\ L Y 23 Q3 Q3¢ O35 O L, ‘°zz>
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Ly, 14 Q4 Qg Qg YUs Qg Ly
d U5 Q5 Q35 Qs- U5 Qs v -0 (1)
X2 X2 M
o Q Q Q Q Q Q Y, -a
Lyy) Q16 %26 %6 Qs %6 e ULy O30
where o, .. are the components of the locally averaged stress tensor, ¢ are

Lij Lij
the components of the locally averaged strain tensor, and Qij are the

components of the elastic (undamaged) modulus tensor in ply coordinates.

Furthermore, u”. are the components of a second order damage tensor, defined

1]
by [10]
M _ 1 c.c
ayy = VL.SI usnsds (2)

c

where V. is an arbitrarily chosen local volume element of ply thickness which
is sufficiently large that u?j does not depend on the size of V|, u? are
crack opening displacements in Vi, ng are the components of a unit normal to
the crack faces, and S. is the surface area of matrix cracks in V. For

vertical matrix cracks (nZ = 0), c:Z and a;z are identically zero [11].




The laminate equations are constructed by assuming that the Kirchhoff-

Love hypothesis may be modified to include the effects of jump displacements

u?. v?, and w?, as well as jump rotations e? and w? for the ith delaminated

ply interface, as shown in Fig. 1. Thus,

u(x,y,2) = u’(x,y) - 2z 18+ H(z-2,) e? b+ H(z-2,) U? (3)
vix,y,2) = Vo(x.Y) -z e H(z-2,) w?) + H(z-2)) v? (4)
and

w(xy,z) = w(x,y) o+ H(zzy) W (5)

where the superscripts "o" imply undamaged midsurface quantities, and H(z-zi)
is the Heavyside step function. Also, & repeated index i in a product is
intended to imply summation.

The displacement equations are averaged over the local area, AL'
shown in Fig. 2, in order to produce locally averaged displacements to be

utilized in the laminate formulation. Thus,

uL(x,y,z) = %L fA[uo- z(e°+ H(z-zi)(e?)) + H(z-zi) u?]dxdy (6)
L
v (x,y,2) = %L IA[vo- z(¢°+ H(z-zi)(wg)) + H(z-2,) v?]dxdy (7)
L
and
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wL(x,y,z) = %L f [wo + H(z-zi) w?]dxdy (8)

AL

By averaging the displacements, the delamination jump discontinuities are also
averaged over AL'
The laminate strains are given by
U

e (9)

v
‘L 3y

o 3w,
L 52 3y .
au 3w

YL 3z ax

—— + —
ay ax

Thus, due to the interply delamination all six components of the strain must
be included in the laminate formulation.

The laminate constitution is obtained by integrating the stress in each
lamina over the laminate thickness. The local lamina constitution is assumed
to be anisotropic since the jump displacements resulting from delamination
produce local anisotropic responses. That is, the out-of-plane shear strains,

YL and L resulting from delamination will contribute to the force

X2 yZ
resultants.




The resultant midplane forces and moments per unit width of region Vi

in the laminate are given by

N o
‘.1 t/2 JﬂLx
N ! o Vdz (15)

Y -t/2 Ly
Nx °L
y Xy

11}

M o

J, x rt/z }, Ly
M J o z dz (16)
\ y -t/2 \Ly
M o
X L
Y Xy
imare 1 i the laminate thickness,
The resultant laminate equations may be obtained by substituting

equations (6) through (8) into equations (9) through (13), and this result
into equations (1). This result is then substituted into equations (15) and
(16), and the divergence theorem is employed to obtain the following laminate
equations [13]:
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where z, is the coordinate of the kth ply interface, (sﬁ) represents the
locally averaged midsurface strains, {(L) represents the locally averaged
midsurface rotations, and [Q], is the elastic modulus matrix for the kth ply
in laminate coordinates. The last term in the above -equation,

containing (oM)k, represents the effect of matrix cracking in the kth ply on

. the in-plane forces (N]. The remaining two terms contain

quantities °gi' representing components of the internal state variable for the
ith delamination, and these terms are summed from one to d, the total number

of delaminated ply interfaces. The components u?i, agi, and ogi are defined

by
uD' - %— ] w?nzds (18a)
[0 SZi
a3y ==, L] s (18b)
Li SZi
e (18¢)
Li 321
9] 1 r D 1 0
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21 2i-1
D 1 0 1 D
ag;z A IB 85 n,dS = - A IT 85_1Nn,dS (18e)
S, So:
21 2i-1

where u?, v?, and w? are the components of the crack opening displacements in
the local volume V| 4, which extends one ply thickness ab've and below the
delaminated ith ply, as shown in Fig. 3. Furthermore, n, is z-component of

unit normal to the delaminations, which is usually of magnitude one. The sign
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Note that the QIj and Q?j are in laminate coordinates.

By a similar procedure, the resultant moments are found to be

A 2 2 o. 1 % 3.3
(M) = 2 kéllQ]k (Zk = Zk—l) {CL} - 3 kZI [Q]k (Zk = Zk-l) (NL)
(o &
0 0
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As in the case of the force resultant terms, the rotation terms must be
supplemented with terms coupling the bending moments with the shearing

deformations.
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It is apparent that for a given set of midsurface strains {¢ )} and

f< ), s well as a given damage state, equations (17) and (25) can be used
to obtain the force resultants {N} and moment resultants (M)}. Since the
midsurface terms are considered to be input, it remains only to obtain the
current damage state for a given laminate. In principal this should be

accomplished via a set of internal state variable evolution laws of the form
YL et o (28)
and

Do 5?j(s“, T, apys ap) (29)

where the quantities of interest are for the plies above and below the
delamination. However, evolution laws of this type are still in fhe
developmental stage for laminated composites. Therefore, as an interim
measure, the authors have developed a procedure for evaluating the damage
state which will be discussed later in this paper. Thus, the current internal

state can be obtained independently of the laminate stacking sequence.

EVALUATION OF PLY STRESSES
In order to evaluate the stress state in each ply, it is first necessary
to substitute displacement equations (6) through (8) into the locally averaged
strain definitions (9) through (14). Utilizing the'divergence theorem on this
result will then give the following equations for the strains in each ply.

0 0 0
e -2 [uL + H(z—zi) QSi] + H(z-zi) 835 (30)

X X X




0 0
e = ‘E -z L+ H(2-2;) ogy) + H (2-2) oy, (31)
y y y
) D
A (32)
Lz Lz i 1i
e, =<0 -zle  +H(z-z,) ol (33)
y2 yz yz -
e, - ch) -z + H(z-2)) °[E)>1'] (34)
XZ X2 xXZ
)
e = ¢ -z (3%)
Ly Ly Ty

The above equations may be utilized to obtain the ply strains, and these
- the may be substituted into equations (1) to obtain the stresses in each
ply. The ply stresses, strains, and damage parameters may then be utilized to
develop evolution laws of the form described by equations (28) and (29).

Since the ply stresses determined by this procedure represent locally
averaged values, they must be considered to be far-field stresses, so that

equations (28) and (29) may more properly be written:

-M _.M M D
oy = o5 (epgr Tooapge oy Kpo Kypo Kypyp) (36)
and
M D

T K,

v O % Kpo Kpps Kppyp) (37)

Q.

-D (
ij = %95 VEkee

where Ki, Kis and Kyrp are the stress intensity factors, which relate the

far-field stresses to the crack tip stresses for a given crack geometry.
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However, it 1is assumed that the geometry of both matrix cracking and
delaminations is sufficiently independent of stacking sequence that the stress
intensity factors may be treated as “"material properties" and thus possess the
same stress intensity factor dependence for all stacking sequences. Thus,
they are encompassed 1implicitly in the material constants required to

characterize damage evolution laws (28) and (29).

DAMAGE VARIABLE CALCULATION

As previously mentioned, the damage variables can be obtained from
evolution laws (28 and 29). Since the formulation of the growth laws is
currently in progress, the variables are presently calculated for a specific
damage state in the laminate. In laminated continuous fiber composites, the
"we  types of damage variables of interest are for matrix cracks and
delaminations. The damage variables can be calculated by using equations (2)
and (18). In order to demonstrate the model, the displacement of the crack
and the delamination interfaces is assumed to va}y sinusoidally with zero
displacement at the edges (see Figure 4). When integrating equation (2) with
a sinusoidal displacement  distribution, the following expression

for cg results:
N (38)
where:

N. is the number of cracks per inch in the ply.

ug is the maximum displacement of the interface.
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When dealing with the off-axis plies, a simple geometrical relation is assumed

between ng and ag yielding:

. M
M 2 sing coss g NC
08 - (39)

n

In this study, the "far-field" ply stresses are calculated for only one
fixed input strain (cxo). Since there is a fixed strain input only in the x-
direction (all other strains are zero), it 1is assumed that all of the
delamination damage variables except those associated with displacement in the
x-direction (og) have a negligible effect on the laminate stresses. The
calculation of the damage variable 1is approximated by of creating an
equivalent effective circular shaped delamination which simulates the separate
irlaminations found between the actual laminate plies in question (Figure
5). As with the matrix crack damage variable, a sinusopidal delamination
interface displacement distribution is assumed. The average surface area of
the equivalent delamination is equal to the total delamination area between
the 1laminate plies in gquestion. Using equation (18c) and assuming a

sinusoidal interface deformation shape results in:

where

ug is the maximum interface displacement in the x direction.

r is the radius of the equivalent delamination size.
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MODEL RESULTS

A computer code has been constructed to determine the effect of damage on
the “far field" ply stresses in composite laminates. Results presented are
for a given laminate strain o © .01 (al1 other strains assumed to be
zero). Damage variables were calculated for matrix cracks in a saturated
damage state using equations (38) and (39) assuming ug = .0001". The off-axis
and 90° plies use the matrix crack damage terms of ug and u?. respectively.
No damage is assumed in the 0° plies. Since the laminate is subjected only
10 €0’ ug is assumed to be the only delamination damage component. This term

js calculated for an egquivalent delamination area by the use of equation (40)

with ug = .00001".

The results obtained from the model are shown in Table 1 and Figures 6-
11. As evidenced from the results, the damage significantly affects the far-
field ply stresses. Damage variables were calculated by using equations (38-
40) to simulate damage existing in several previously tested laminates.
Matrix cracks had a significant effect on ply stresses in the 90° plies in
cross-ply laminates. The largest number of matrix cracks was evident in the
90° plies of the [02/902]S laminate resulting in a thirty-four percent far-
field ply stress reduction. The two quasi-isotropic laminates developed
different damage resulting in dissimilar far-field ply stresses. The
[90/:45/0]s laminate exhibited 1little matrix cracking and corresponding
reduction of ply stress in both 90° and z45° plies. The [0/145/90]s laminate
exhibited a similar stress reduction in the $45° plies, but showed a
substantial stress reduction (fifteen percent verses one percent) in the 90°
plies when compared to the [90/:45/0]S laminate. [t should be noticed that
only the stresses in plies between delaminations were affected by the

delamination. This is a result of symmetric delamination damage about the




midplane of the laminate. Ffor this damage state, the resulting og terms are
equal in magnitude, yet opposite in sign. By observing equation (30), it is
apparent that for fixed strain and a symmetric damage state, the laminate
strains are affected only in the region between the delaminations. The matrix
cracks are shown to alter the constitutive nature of the plies, and
delamination effects are incorporated into the laminate through the laminate
equations. This alteration in ply stresses will significantly affect the

growth of new damage in the composite.

SUMMARY AND CONCLUSIONS

The authors have presented a continuum damage model that includes damage
terms resulting from both matrix cracking and delamination. This model has
the capability of predicting the mechanical constitution of a laminated
composite with damage. The model incorporates the effect of damage by tensor
valued internal state variables. The internal state variables physically
represent the local volume averaged relative crack face displacements. The
effect of matrix cracks 1is in the 1local ply constitutive behavior.
Delamination effects, however, are reflected through the laminate equations.

Results of this work illustrate that the stress state in the laminate is
substantially influenced by damage. In the [02/902]s laminate, matrix cracks
and delaminations reduce the stress in the 90° plies by almost sixty
percent. For cross-ply laminates, the damage induced ply stress reduction
varies from about forty to sixty percent of undamaged stress in the 90°
plies. Stress reduction in angle-ply laminates is less dramatic (depending on
location and size of the delamination). This alteration in stress state is

critical in determining both the magnitude and location of damage development.
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Table 1. PLY STRESSES RESULTING FROM MATRIX

CRACKING AND DELAMINATION

LAMINATE PLY INITIAL STRESS STRESS DELAMINATION MATRIX
PLY STRESS W/MATRIX  W/MATRIX LOCATION AND DAMAGE
o (ksi) CRACKS CRACKS & MAGNITUDE VARIJABLES

DELAM. 0 M- M

o (ksi) o (ksi) aq 6y ug

10/90] ¢ 0 211.4 211.4 211.4 0/90 0 0

90 14.0 9.6 8.5 16.6% 00318 0

.00076

10/90, ] ¢ 0 211.4 211.4 211.4 0/90 0 0

90 14.0 9.5 7.9 24.2% 00326 0

90 14.0 9.5 7.9 .001109 00326 0

[02/902]S 0 211.4 211.4 211.4 0 0

0 211.4 211.4 211.4 0/90 0 0

20 14,0 8.2 6.0 49.5% 00344 0

30 i4.0 9.2 6.0 .002267 00344 0

[0/903]s 0 211.4 211.4 211.4 0 0

90 14.0 10.6 8.3 0/90 00247 0

10) 14.0 10.6 8.3 35.3% 00247 0

90 14.0 10.6 8.3 .001617 00247 0

[0/£45/90] 0 211.4 211.4 211.4 0 0
45 64.4 64.0 64.0 -45/90 0 .00067
-45 64.4 64.0 64.0 57% 0 -.00067

90 14.0 11.8 8.2 .002611 .00157 0

[90/£45/0] ¢ 80 14.0 13.9 13.9 .00060 0
+45 64.4 64.0 64.0 +45/-45 0 .000¢€7
-45 64.4 64.0 48.7 52% 0 -.00067

0 211.4 211.4 161.0 .002382 0 0
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A ) General Laminate

B) Exploded View with Damage

Figure 2. Characteristic Local Region of Damage.
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Figure 3. Interply Delamination in a Laminated Continuous Fiber
Composite.
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A CUMULATIVE DAMAGE MODEL OF MATRIX CRACKING AND
DELAMINATIONS IN CONTINUOUS FIBER LAMINATED COMPOSITES

by
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ABSTRACT. A model is presented herein for predicting the effects of
microstructural damage on the constitutive behavior of laminated
continuous fiber composites. The model is developed using the
approach of continuum damage mechanics. Second order tensor valued
internal state variables are constructed which reflect the locally
averaged effects of both matrix cracks and interply delaminations.
Because both of these damage modes exhibit statistical inhomogeneity
in the coordinate dimensions normal to the plane of the laminate, the
model includes a weighted effect of the distance from the midplane.
Linear elastic fracture mechanics is utilized to construct the
parameters necessary to characterize the damage dependent material
properties. The resulting model is then shown to be independent of
the stacking sequence and ply orientation in the laminate.
Comparisons of the model predictions to experimental results reported
herein for several stacking segquences tend to support the validity of
the model.

INTRODUCTION

The method of continuum damage mechanics assumes that the exact
analysis of a multiply connected domain with numerous microcracks is
hopelessly complex. Alternatively, the effects of these microcracks
on the macrophysical response are reflected via one or more internal
state variables [1] called damage parameters. The initial use of
damage mechanics appears to have been due to the observation that in
metals classical plasticity theory breaks down when significant grain
boundary sliding and/or microcavitation occur because the initial
elastic properties are not observed on unloading [2].

In the last twenty years there has been an incredible expansion
of research in damage mechanics, as evidenced by two recent review
articles [3,4,5] and the publication of the first textbook devoted
entirely to damage mechanics [6]. However, as pointed out in
reference 5, although substantial research has been performed on
metals, concrete, and geologic media, very little research has been
detailed on laminated composite media. In fact, to these authors'




knowledge, only three concerted efforts have reached the open
literature at the time of this writing. These are due to Talireja (7-
11], Allen, et al. [12-15]), and Weitsman [16]. Although there may be
other applications of damage mechanics to laminated composites on the
threshold of making their way into the literature, we are unaware of
them at this time.

Unlike metals and concrete, laminated composites are complicated
by the fact that the layered orthotropy of the medium produces several
distinctly different and anisotropic damage modes. Therefore, whereas
it is often sufficient to deal with a single isotropic (scalar valued)
damage tensor in initially isotropic and homogeneous media, this
simplicity cannot be utilized in lTaminated composites. Furthermore,
each of the damage mechanisms is interrelated and extremely difficult
to distinguish experimentally. Finally, the damage may not be
considered to be statistically homogeneous through the laminate
thickness. Therefore, the application of continuum damage mechanics
to laminated composites is much more complicated then many previous
applications.

An example of a composite laminate with two distinct modes of
damage is shown in Fig. 1 {17]. In this schematic there are matrix
cracks in the crossplies and delaminations at the ply interfaces.

Note that the cracks are oriented and statistically nonhomogeneous in
the out-of-plane coordinate direction. Experimental observation [18]
indicates that the matrix cracks are load induced, whereas the
delaminations are driven by stress concentrations at the matrix crack
tips. Therefore, significant interaction of the damage modes is
observed. Although not shown in the figure, there are often
additional damage modes observed prior to component failure, including
fiber-matrix debonding, fiber fracture and fiber crimping and/or
buckling in compression. An excellent review of the genesis of these
events is described in further detail in reference 10.

The ultimate objective of any continuum mechanics model is to
design away from failure. In the sense that laminated composites fail
due to a complex sequence of damage events, it is essential to capture
the important features of the damage process in order to accurately
predict failure. In other words, the failure function should
accurately reflect the history of damage via the damage parameters.
Although this will be a complex task in laminated composites, the
current paper discusses an ongoing effort to-do just that.

A continuum damage model must contain four essential ingredients:
1) stress-strain-damage equations; 2) damage growth laws for the
damage ISV's; 3) a failure function describing local failure in terms
of the damage ISV's and observable state variables; and 4) an
algorithm for solving boundary value problems in which the state is
nonhomogeneous. If steps one through three can be accomplished
accurately, then step four is relatively straightforward, involving a
procedure not unlike extending an elastic algorithm to include
plasticity. Steps two and three tend to be the most complex,




especially for laminated composites. Although there has been some
research on these two components of the model, the authors would
consider this work exploratory at this time. The subject of the
current paper is step one. The fundamental difficulty in this
procedure is to develop a model which is independent of ply
orientation and stacking sequence. Of course, the ultimate goal of
this research is step three, to predict failure as a function of the
current damage State.

MODEL DEVELOPMENT

The authors have been developing a model for predicting the
constitutive behavior of laminated continuous fiber composites [l2-
15]. This model utilizes the concept of continuum damage mechanics,
in the sense that the effects of microcracks are reflected via
internal state variables (ISV's) in the constitutive equations, rather
than treating each microcrack as a separate internal boundary.
Because only the average macroscale effect of microcracking is
modelled rather than the effect of each individual crack, the model is
phenomenological in nature. Since cracking is not statistically
homogeneous in the coordinate direction normal to the laminate,
statistical weighting is necessary in this direction, and this is
accomplished via kinematic constraints imposed on the laminate
equations.

The model has recently been extended to predict the response of
laminates with both matrix cracks and interior delaminations [14], as
shown in Fig. 1. This problem is complicated by two factors. First,
because these two damage mechanisms are oriented differently, they
require two separate tensor-valued damage parameters. Furthermore,
the mechanics of these two damage modes are substantially different.
The matrix cracks may be assumed to be statistically homogeneous over
each ply in a small local volume element. Therefore, classical local
volume averaging may be used to obtain this damage parameter. O0On the
other hand, delaminations are not statistically homogeneous in the 2
coordinate direction. This requires that a modification be made to
statistical averaging techniques. Although statistical homogeneity is
assumed in the x and y coordinate directions, a kinematic constraint
similar to the Kirchhoff-Love hypothesis is applied in the 2
direction. The resulting damage parameter is a weighted measure of
damage, with delaminations away from the neutral surface causing a
greater effect on laminate properties.

The model development proceeds from the assumption that all
material inelasticity is contained within small zones surrounding the
microcracks. The effect of matrix cracks on ply level constitutive
equations is accounted for via the local volume avgrage of the diadic
product of the crack opening displacement vector uy and the crack

face normal ng




L J u?nst (1)

where V| is the local volume for which cracking can be considered
statistically homogeneous, and Sc is the surface area of cracks in
V . For matrix cracking V_ is typically one ply in thickness. The
ply level stress-strain relations are therefore given by

i M
955 = Cisnaleng = o%q) (2)

In order to account for interply delamination the following
kinematic assumption is made (See Fig. 2.):

u(x,y,2) = uo(x,y) - 2% + H(é-zk)egl + H(z-zk)uE (3)

v(x,¥,2) = vO(x,y) - 2140 + H(z-zk)wE] + H(z-zk)vE (4)
and

w(x,¥,2) = wo(x,y) - H(z-zk)wE (5)

where u and v are components of the in-plane displacement and w is the
out-of-plane displacement and H is the Heavyside step function.
Furthermore, 8 and ¢ represent rotations of the midplane. The
quantities with superscripts o are undamaged midsurface values, and
quantities with superscripts D are caused by interlaminar cracking.

Employing standard laminate averaging techniques will result in
the following laminate equations [14]
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where (N} and {M]) are the resultant forces and moments per unit length
respectively, and (aM)k and {oE) represent the damage due to matrix

cracking and interply delamination, respectively. Furthermore, n is
the number of plies, and d is the number of delaminated ply
interfaces, as shown in Fig. 3. 0

The internal state variable for delamination, (oL), is obtained

by employing the divergence theorem on a local volume element of the
laminate. The resulting procedure gives [14]
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where the subscript i is associated with the ith delaminated ply
interface. Furthermore, Vi; is equivalent to t;A , where t; is the

thickness of the two plies above and below the delamination, as shown
in Fig. 4.

Furthermore, the matrices [Q] with subscripts k are the standard
elastic property matrices for the undamaged plies. The
matrices [Q] with subscripts i apply to the ith delaminated ply
interface. They represent average properties of the plies above and
below the delamination. These are described in further detail in
reference l4.

Determination cf E, and Yy for the Mixed Damage Mode

Now, suppose that one is interested in modeling stiffness loss as
a function of damage state. In order to do this it is necessary to
construct the (stacking sequence independent) material parameters
developed in the previous section. The loading direction engineering
modulus, E,, and Poisson's ratio, Vyy? of the laminate are defined as
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For the purpose of comparing the model predictions to
experimental results, we will confine this development to the case of
a symmetric, balanced laminate with a delamination site symmetrically
located with respect to the laminate midplane. For this special case,
{K} = 0 and the fourth term in equation (6) is zero.

Furthermore, ay; = 0 and the third term in equation 6 is the same for

both delamination sites. Substituting equation (6) into equations (9)
and (10) results in the following expressions for E, and v
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where it is assumed that all plies have the same thickness so that
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Furthermore, damage introduces local anisotropy so that

Rl = 10, O Q3 %a Qs e (14)




It has been previously shown [19] that

Tq =7 @+ Tp) (15)
Os =7 @)+ T (16)
T = 7 @ + Tpp) (17)
Tps =7 @1z + Tp) (18)

where the superscripts A and B designate the property of the ply
immediately above and below the delamination, respectively.

Determination of Internal State Variables

Implementation of equations (11) and (12) to predict the damage
degraded laminate moduli requires the specification of the partial
derivatives of the internal state variables for a given damage
state. In the absense of growth laws, the damage state must be
determined experimentally. Expressions for the internal state
variables have been previously developed by the authors [13,14] by
employing energy principles. In the original constitutive theory
formulation [12] the local energy loss contribution to the Helmholtz
free energy is directly related to the internal state variables.
Furthermore, the local energy loss is also directly related to the
fracture mechanics based strain energy release rate for crack creation
during load-up. Therefore, expressions for the internal state
variables have been developed from expressions for the strain energy
release rate for each damage mode. In the case of matrix cracking in
cross-ply laminates,
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where m is the number of consecutive 90* plies, p is the number of 0°
plies, q is the number of 90° plies, Ex is the initial undamaged
modu lus, and E is the damage-degradedomodulus corresponding to
matrix crack da*age state S The term in the parentheses was
determined experimentally fr&m tests on a 10/90/01s laminate and is
given by

2

x
[,

= 0.99969 - 0.061607 5 + 0.04623 S

(20)

m
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Finite element studies have shown that the effects of adjacent layer
constraint on the energy released by the 90° layers is a second order
effect [20]. Therefore, by using the following second order tensor
transformation

aZM aa
—'1_; =a_ a a_ a_ —-P-qo (21)
de___ ip Jjp mr ns e

mn

where no bars refer to the crack coordinate system and the over bars
refer to the laminate coordinate system, equation (19) is generally
applicable to matrix crack damage in any ply of any laminate stacking
sequence.

In the case of off axis plies, other than 90°, the tensor
transformation law given by equation (21) also requires the

determination of aaTZ/aelz for matrix crack damage. This damage

parameter is related to shear deformation at the ply level which gives
rise to the sliding mode of relative crack face displacements.

Considering only that part of the energy loss, uf, due to shear
behavior we have [12]

c '
u = 168°6°8 + H.0.T.'s (22)

where 168= '312' the tensorial shear strain €6=€12" and ag=ai, in

contracted notation. Using fracture mechanics concepts the local
energy loss may also be expressed in terms of the mode II strain
energy release rate due to matrix cracking, GII s S

: M

Sj Gy, 88 (23)




where SM is the matrix crack surface area in the local volume element,

and V, is the local volume for a single ply.
Equating expressions (22) and (23) and neglecting higher order
termes yields

1
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We now require an expression for GII as a function of Sy. The strain
energy release rate may be defined ag

aU

G = - E (25)
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where U = strain energy of the local volume due to shear behavior.
For a linear elastic material,

21

_ 2
where it is recalled that tg is the tensorial shear strain. Ffor

cracking in the fixed grip case where the "effective" material
stiffness is changing while the strain is held constant, substituting
equation (26) into equation (25) results in

36
E (27)
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where aGlz/aS is interpreted as the change in the "effective" shear
modulus due to matrix crack development. Substituting (27) into (24)
yields
2¢ 3G
6 12
ag = = 7—— | (===%) dS (28)
PP

where Gy, in equation (24) is written as (Glz)o to distinguish the
initial undamaged modulus, (Glz)o’ from the degraded modulus, Gy,. To
evaluate equation (28) and specify the damage parameter, aa8/ae6. we
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must have an expression for Gy, as a function of S. Since aGlz/aS is
interpreted as the rate of change of the effective shear modulus, this
can be determined experimentally from the lt45]2s where the plies are

in a state of pure shear. For this laminate
o]

- X
S12 70 _- > (29)

where ZX is an applied uniaxial tensile stress, ¢ is the strain in
the loading direction, and €y is the strain in the transverse
direction. By using a 1.0 in. biaxial extensometer, equation (29)
gives Gy, as a function of matrix crack damage in the 1.0 in. x 1.0
in. local volume as measured in the simple uniaxial test. Determining
Gy in this manner, aGlz/aS in equation (28) may be directly
integrated and the damage parameter becomes

3a dG
8 2 12 ds (30)

The results of monotonic tensile tests on [:45]2s laminates of

AS4/3502 graphite-epoxy revealed an approximately linear relationship
between Gy, and S. Furthermore, the number of matrix cracks in each
ply was essentially the same. Assuming a linear relationship between
Gy, and S, equation (30) becomes

2l L,y Sidee, v
%6 | Gy2)g  Sexp
M

(31)

where (Glz)EXP/(Glz)o = 0.822 for Sgyp corresponding to 21 cracks per
inch in each ply of the [t45]25. Since the plies of the [345]2s are
in pure shear, expression (31) may be used to determine aas/ae6 for

any ply with matrix crack damage. The fiber (crack) orientation of
the cracked ply is accounted for by the coordinate transformation
given by equation (21).

The delamination internal state variable was determined from
energy principles as well, except O'Brien's [21] strain energy release
rate model was used rather than experimental results. Since 0'Brien's
model assumes that the strain energy release rate is independent of

11




the size of the delamination, the internal state variable is linear in
delamination surface area. Therefore,
4
3og n (Exo -t) SD
o (&) (32)

o€ T E =
X Qs

where n is the number of plies in the laminate, Sp is the delamination

area and S is the total interfacial area in the local volume. e” is
the modulus of the sublaminates formed by the delamination and is
given by

p d
E =3 Z E.t. (33)

where d is the number of sublaminates and t is the laminate
thickness. By similar reasoning,

*
n (Eyo -E) SD
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Finally, as a first approximation for the cross-derivatives in
equations (11) and (12), we have
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where Sij is defined by the following undamaged laminate stress-strain

relationships using the first term of equation (6)
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As an example, consider the case of cross-ply laminates where the
delamination site is at a 0/90 interface. Equations (11) and (12)
reduce to the following simplified forms

S T T S T Y QP )] (41)
X X, nEx K51 117k ac, k™ 2 Ex S
0 o
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where Ell' 522 and vip are the standard 1am1na properties. It should
be noted that for cross-ply laminates 3a /aex is the only nonzero
internal state variable for matrix cracking. (ao':/aex is a ply
property given by equation (19).)

Experimental Program

A limited experimental program has been conducted to verify the
accuracy of the constitutive model formulation. Experimental tests
have been conducted on tensile specimens from a number of quasi-
isotropic and cross-ply laminates. The material system is AS4/3502

graphite/epoxy with E;y = 21. 0x106 psi (144.8 GPa), Epp = 1. 39x108 psi
(9.58 GPa), vy, = 0.310 and Gy, = 0.694x10° psi (4.79 GPa). The fiber
12 12 =

volume fraction is approximately 65% and the per ply thickness is
0.0055 in. (0.132 mm). The loading-direction modulus and Poisson's
ratio were measured by a biaxial extensometer with a 2 in. gage
length. Damane was developed under tension-tension fatigue at 2Hz and
R=0.1. The progression of damage was documented by periodic
examinations by x-ray radiography and edge replication. Moduius
measurements were taken at each examination.

Comparison of Experimental Results to Model Predictions

The comparison of model predictions to experimental results for

13
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5 and 6, respectively. Matrix cracks in the 90° layers are at the
saturation damage state for all laminates. The delamination interface
location and percent of delamination is listed under the laminate
stacking sequences in the bar charts. An x-ray radiograph of the
typical damage state in a [0/903]¢ and [90/:45/0]¢ laminate is shown

in Figs. 7 and 8, respectively. It should be noted that Poisson's
ratio values for the two quasi-isotropic laminates are not given
because they were not measured experimentally. The comparison between
the experimental results and model results is quite close for Ex.
However, there are some discrepancies in the comparison

of Vyy values. The authors attribute these discrepancies to the

difficulty in measuring Poisson's ratio. Because Poisson's ratio is
quite small for cross-ply laminates, the measurement is more sensitive
to experimental error.

E, and Vxy is displayed in graphical form in the bar charts of Figs.

SUMMARY AND CONCLUSIONS

The authors have formulated a constitutive model for laminated
composites with both matrix cracks and delamination damage. The model
is based on the concept of continuum damage mechanics and uses second-
order tensor valued internal state variables to represent each mode of
damage. The internal state variables are the local volume averaged
measure of the relative crack face displacements. The local volume
for matrix crack damage is at the ply level, whereas the local volume
for delamination damage is at the laminate level. Therefore, the
damage-dependent constitutive model takes the form of laminate
analysis equations modified by inclusion of the internal state
variables.

This paper demonstrates the applicability cf the model to predict
the degraded engineering modulus, Ex' and Poisson's ratio, Vy?® of

quasi-isotropic and cross-ply laminates of graphite/epoxy. The
comparison between model predictions and experimental results is very
close. The authors believe that the good agreement reported herein
demonstrates the validity of the model formulation and the physical
interpretation of the internal state variables.
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ABSTRACT

A mathematical model utilizing the Internal State Variable(ISV)
concept is proposed for predicting the upper bound of the reduced axial
stiffnesses in cross-ply laminates with matrix cracks. The axial crack
opening displacement at the matrix crack surface is explicitly

expressed in terms of the observable axial strain and the undamaged

material properties.

Crack parameters representing the effect of matrix cracks on the
observable axial Young's modulus are predicted for Glass/Epoxy and Gra-
phite/Epoxy material systems. The results of the present study show
that the matrix crack opening displacement is significantly influenced
by the ratio of crack length to the distance between two adjacent

cracks resulting in stiffness reduction in a cross-ply laminate with

matrix cracks.

Comparisons of the present model with experimental data and other
models in the literature shows a good agreement, thus confirming direct

applicability of the model to multi-layered cross-ply laminates.




INTRODUCTION

Considerablé research has been focused on the mathematical model-
ling of stiffness reduction in fiber-reinforced laminated composite
materials due to matrix cracks, Crack dfnsity, or the number of matrix
cracks per unit length of each layer, has been frequently utilized as
an independent variablé to express the effect of matrix cracks on the
observable stiffnesses of a laminate. Also, the crack density in each

layer has been known to increase monotonically under cyclic loading or

monotonically increasing tensile loading.

A number of experimental studies[1-3]) have shown that each cracked
layer, for example, the 90 degree layer in a [0/90,]¢ laminate sub-
jected to a tensile loading, can carry significant tensile loading. A
fundamental question has arisen from the discrepancy between these
experimental observations and the classical ply discount method, in
which each cracked layer is assume to shed its entire load carrying
capacity in the direction normal to the crack surfaces. A typical
example of this discrepancy is shown in Fig. 1., which shows that the
effective Young's modulus of a [0/90,]; laminated spécimen in the axial
direction approaches asymptotically to the solution from the classical
Ply discount method as cracks become saturated. This discrepancy is
caused by the fact that the classical ply discount method neglects all
out-of-plane stress components while each cracked layer, actually a
sub-structural component for a laminate, experiences a fairly high
level of out-of-plane stress components which are not negligible com-

pared with in-plane stress components.




Among existing theoretical models, Hashin's model[6é] based on the
complementary strain energy method may be considered as the most effec-
tive one for predicting the out-of-plane stresses and therefore, the
lower bound of the effective stiffness as a function of crack density.
However, there does not exist a relatively simple strain energy method
based model for predicting the upper bound of the effective stiffness.
Therefore, the present study proposes an explicit solution to the
stiffness reduction as a function of crack density in a cross-ply lami-
nate with arbitrary stacking sequence by introducing an Internal State

Variable (1SV) based on the strain energy method.

Since matrix cracks in laminated composites can be observed at the
specimen edges even with the unaided eye, the readers may be confused
by the terminology "INTERNAL," in other words, “"HIDDEN FROM OBSERVERS."
The internal geometry and therefore the contribution of each crack to
the global response of a specimen with many cracks, however, can be
neither observed nor measured experimentally within reasonable accu-
racy. By utilizing the concept of a local volume element representing
statistically homogenegus damage state, constitutive equations can be
easily reconstructed to relate observable state variables and an inter-
nal state variable which is introduced by assuming a statistically
homogeneous damage state. In the present study, the average value of
matrix crack opening displacement multiplied by the unit normal to the
crack surface is defined to be an internal state variable. At a fixed
damage state in which the number of matrix cracks per unit length is
known, the internal state variable for representing the crack opening

displacement will be explicitly expressed in terms of the kinematics of




internal cracks.

Following a brief literature survey, the theoretical development is
presented along with a parameter sensitivity study of [0g/90]s type
laminate configurations. The usefulness of the ISV concept is also
examined by comparing the result of the present research effort with .
available experimental and theoretical studies in the open literaturé.
The generalization of the theoretical model is chén described for
cross-ply laminates together with further applicability of the ISV con-

cept for analyzing angle-ply laminates containing arbitrarily shaped

matrix cracks.




LITERATURE SURVEY

All existing theories can be categorized into five types according

to their main assumptions and mathematical techniques:

1. Shear-lag Model ... Highsmith and Reifsnidet[i]

2. Self-Consistent Model ... Laws and other authors|4-5)

3. Complementary Strain Energy Method ... Hashin(6]

4. Strain Energy Method ... Aboudi[7]

5. Internal State Variable Hethod'... Talreja[BJ and Allen et
al.(9-10]

Each model has its own advantages as well as disadvantages for pre-
dicting the stiffness reduction in a fibrous laminated composite with
matrix cracks. A brief review of the existing models and the necessity

of a new model is discussed in this section.

The shear-lag model has been used by Highsmith and Reifsnider(1l)
for predicting the stiffness reduction of various types of laminates
due to matrix cracks. In the shear-lag model, the far-field tensile
stress was assumed to transfer to the cracked layer via shear deforma-
tion of a thin bouﬁdary layer in the vicinity of the layer interface.
Also, the shear stress was assumed to be dominant within the boundary
layer or so called shear transfer region. The procedure for shear lag
analysis is relatively simple and results in a reasonably accurate pre-
diction of stiffness reduction as a function of the crack density, even

though it is not clear how to determine the boundary layer thickness in




a systematic way.

Laws and other authors([4-5] have utilized the self-consistent model
together with classical laminated plate theory for estimating the
stiffness reduction due to matrix cracking. The self-consistent method
is a variation of the method for evaluating the overall stiffness of a
composite material with various constituents iﬁcluding voids [11l]. For
an isotropic material with stacked cracks, the self-consistent method
retrieves the average crack opening displacement which may be directly

obtained from the fracture mechanics solution to a single crack

imbedded in an infinite medium.

Hashin's model has utilized a relatively simple procedure based on
the principle of minimum complementary strain energy to calculate out-
of-plane stress components and the effective stiffness in a very expli-
cit way[6). For analyzing a [Oq/QOr]s type laminate, Hashin'’s model is
obviously the most effective one. However, difficulties arise when
Hashin's model is generalized for a multi-layered laminate of the types
[Op/90q/0r/90t]s, because of the cumberspme nature of the complementary

strain energy method associated with assumed stress functions and trac-

tion boundary conditions.

Aboudi has expanded the displacement fields of a unit cell repre-
senting a body with aligned cracks in Legendre polynomials[7]). The
effective elastic moduli of a cracked solid were calculated from.the
elastic energy stored in the cracked body. Aboudi’s model gives approx-

imately the same result as the shear-lag method, and requires higher




order expansions of the assumed displacement to increase the accuracy

of the model prediction.

Talreja has utilized the damage vector concept for modelling a two-
dimensional solid containing oriented crack arrays[8). By assuming the
energy density in a representing volume as a function of the strain
tensor and the damage vector sét,'he reconstructed the constitutive
equations with the observable strains and the effective stiffness ten-

sor. This model may be considered as an alternative to the ISV method

described below,

Allen et al. have developed a model for predicting stiffness loss
as a function of damage state in composite materials[9-10]. Their model
utilizes a set of second o?der tensorial quantities previously proposed
by Kachanov{1l2] to descriﬁe each internal damage state. These tensorial

quantities have been named as internal state variables, defined by

n 1
aij - uinj as ’ (1)
v
52

where

=1, 2, ... to the number of damage modes in the laminate.

uj = displacements on the crack faces
nj - unit normal to the crack surface

local volume over which cracks are arranged

<
1

n
So = surface area of cracks in V,




The stress-strain relations at the ply level are given by

n n
o913 = Cijk1 k1 + Iijk1 okl (2)

The ISV model described by eqs. (1) and (2) together with exper-
imentally determined energy release rates for the [0/90/0)¢ laminate
has been utilized to predict axial stiffness loss due to matrix damage
in several graphite/epoxy cross-ply and quasi-isotropic laminates[13),

This last model has also been utilized to predict stiffness loss due to

delamination{1l4].

Among these models, the ISV method can be considered as a general
tool for predicting the overall effect of each damage mode on the
global response of a fibrous composite laminate. In order to predict
the upper bounds of effective Young's moduli for (0g/90¢]ln,s type
laminates with matrix cracks, the authors present a relatively simple
procedure based on the strain energy method to estimate the internal
state variable representing the effect of the average matrix crack

opening displacement on the effective Young's modulus.
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MODEL FORMULATION

Consider a laminated composite material with infinite number of 0
and 90 degree layers as illustrated in Fig. 2-a. Since the crack pat-
terns in 90 degree layers may be random, displacement fields in each
crack element surrounded by two adjacent crack surfaces and two mate-
rial interfaces are different. It is apparent from Fig. 2-a that a
solution to the boundary value problem for all possible displacement
boundary conditions is impractical, or at least very cumbersome to
obtain. A relatively simple solution may be obtained by postulating a
fictitious boundary value problem which represents a statistically
arranged volume element shown in Fig. 2-b. The mutual influence between
cracks in different 90 degree layers may be implicitly taken into
account by assuming the y and z plane to remain plane throughout defor-
mation under the axial tensile loading, P, at far-field. The displace-

ment fields may then be assumed as

u = (uy/a)x + I I ap, sinax cosfy (3-3)
o n
v = -(vo/t)Y (3-b)
v = -(vo/b)z (3-¢)
where m,n=1, 2, 3, ..., k

a = (2m-1l)r/2a

B = (2n-1)xn/2¢c
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Strain components are given by

Cxx = u,/a + E ﬁ apn @ cosax cospfy (4-8)
tyy = "Volt - | (4-b)
€2z = "Vo/b (4-c)
Txy = -g E apn B sinax sinfy | (4-4d)

Otherwise, €4y = 0.

The total potential energy in the volume( ax2tx2b ) is then

described by

H-U+VE

1 (b rc ra

- - cijkl €1j €kl dx dy dz - P ulx_a (5-a)
2dp e o y=r

b -t

n
—— = Cyy [(up/a)2at + 2(up/a)X E(-1)™May /8 + T Z(agna)?at/s)
2b m n mn

+ Cyy (vo/c)zat + Czy (wo/b)zat + 2Cyz VoW, a/b

2Czx [(uguo(e/b) + (Wo/B)T E('l)(m+n)amn/ﬂ]

20xy [(uoVe + (Vo/t)Z E('l)(m+n)amn/ﬂ]

+

Gxy T Z(appf)?ac/t - Puo (5-b)

where p = P/2b.
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Differentiating the total potential energy with respect to unknown

constants gives the following mxn+3 algebraic equations to solve.

p/2t = Cxx(uo/a) - ny(Vo/t) - sz("o/b) (6-a)

+ (Cyx/at)Z Z(-1) (™ MNay /p

0 - ny(vo/c) - ny(uo/a) + Cyz(vo/b) (6-b)

- (Cyy/at)I Z(-1) (Mg /g

0 = Cyp(wy/b) + Cyz(vo/t) - Cpy(u,/a) (6-¢)

- (sz/at)g E(’l)(m+n)amn/ﬂ

0 = [Cxx(uo/a)-Cyy(Vo/L)-Cpy (Wo/b) ) (-1) (B¥D) /g (6-q)

+ agn(at/b)[Cyya?+Gy p2)

From eqs. (6-a), (6-b), and (6-¢), vo/t and Wo/b are determined.

cxyczz - Cyzczx
Vo/t = (p/2t) (7-a)
det[Cij]

CivCypx = Co
wofb = (py2ny X Wy (7-b)
det[Cij]
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From eqs. (6-d), ag, are expressed in terms of other constants.

40-1) (MDY €y (ug/a)+Cyy (Vo /T)+Cay (Wo/D) ]

atp [cxx°2 + nyﬂz]

-6Aat
- Cxx (Uo/8)+Cxy (Vo/B) +Cx (vo/D) ] €

£ 2(-1) (™Mapn/p -

n

where

A 1
f -
ZE zg Cex(2m-1)2(2n-1)2 + Gyy(a/e)2(2n-1)%
n

m

From eqs. (6-a) and (8-b), u,/a is determined.

2
CyyCzz - Cyz 1
ug/a = (p/2t) | 2 +
deC[Cij] ﬂ4
—-c

Utilizing eqs. (1), (7-a), (7-b), (8-a), and (8-d), ayy is

explicitly given by

(-1)p/2t
Qxx -

&

— - Cyy

64¢

All other components of ajj are assumed to be negligible.

12

(8-a)

(8-b)

(8-¢)

(8-4)

(8-e)
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The ISV, ayy, given by eq. (8-e) represents the contribution of
crack opening displacement to the observable axial strain which can be
measured from a specimen with matrix cracks under uniaxisl tensile

loading. ayy can be rewritten in terms of observable strain, u,/a,

using eqs. (8-d) and (8-e).

°(u°/8)
ayx = (8-£)
2 4

CwvC -C .
- yytzz yz J ) CxxJ
det[cij] 64L€

The average value of the actual strain is then given by

ace ind
Cxx = fxx [ 1+ Cyy ] (9-a)
act ind -

- 9-b
yy Cyy ( )
act ind
€22 = €zz (9-¢)

where
ind ind ind
€xx = Ug/a, yy = -vo/t, €2 = -Wo/b.

The stress-strain relations are given by

. - ace,
(”xx [ Cxx Cxy Cxz (€xx
. act
<any - Cyy Cyz | {eyy } (10-a)
SYM. act
\Tzz) L Czz ] \ezz J




Substituting eq. (9-a), (9-b), and (9-c) into eq. (10-a) gives the
average values of stress components expressed in terms of observable

strain components and effective stiffnesses.

- And |

(p/2t) Cyx(1-€) Cxy Cxz 1 [exx
ind

{0 = Cry(1-0) Cyy Cyz | {eyy 1 (10-b)
ind

L0 ) [ Cxz(1-€) Cyz Czz | lezz )

where
1
{ = (10-¢)

CyC C2 4
zz ° z hd
1+ yy-zz y e,
det[Cij] 6LE

Since the average value of the out-of-plane normal.stress, Oyy, is

zero in eq. (10-b), classical laminated plate theory can be directly
applied for expressing the effective Young’s modulus of a damaged
[Oq/90r]s laminate as a function of the crack density, t/a, and the
elastic properties of an undamaged material. For a [Oq/90r]s laminate
under uniaxial tensile loading, a compact analytical solution to the

effective Young's modulus is obtained as follows.

By replacing subscripts x and z with L and T, respectively, and

rearranging terms, plane stress constitutive relations are obtained.

{ oLL } [ Crr  Crr(l-¢) } {‘LL }
- (11-a)
oTT Cir Cpr(l-D) €TT

14




The effective stiffness matrix for a [Oq/90t]s laminate under

in-plane biaxial tensile loading becomes

qCpy+r(1-¢2)Crpr [q(1l-¢y)+r)CyT

- [ :, } _ 1,

(q+r(1-¢2)]CLT q{1-¢1)Cpy+rCry

where (1 and () represent the effects of matrix cracks in 0 and 90

degree layers given by eq. (10-c), respectively.

If O degree layers are assumed to remain undamaged during deforma-

tion, the inverse of eq. (11-b) can be written as

. r(Ep/E7)+q -vylq+r(l-¢2)]

q T

[ S3 } - (11-¢)
Crrdet([C; 3]
T vppr QEL/Ep)+r(l-£p)

The effective compliance matrix of an undamaged [Oq/90r]s
laminate, [Sij]' is retrieved by setting a/t = », The normalized axial

stiffness, sll/gll- then can be described by

Cor[ r(Ep /ET) + q - VL%(q+r) ]
(12-a)

$11/511 = 1 -
2 2
(r+qEy /ET) (Q+rEy /ET) - vp7(q+r)

15




where
1
4
.4
1+ —_ -1
64X
1
A - (12-¢)
Gr(a/c)?
m 0 (9m-1)2(2n-1)2 + —_(2n-1)%
PET
l*VLTVTL .
p - ‘ (12-4)

(l-UTT~2VLTVTL)(1+uTT)

The non-dimensionalized crack opening displacement, 6§, is given by

uIx-a

& = ulx-a - “lx—a )/“Ix-a -1-
y=t y=t Yo

(-1)7-1 cospy

w
- _53 , (12-e)
2a Gr(a/t)?
T T (2m-1)2(2n-1) + ———(2n-1)°
PET

and the variation of § is illustrated in Figs. 3-a and 3-b for typical

isotropic and orthotropic material systems, respectively. The crack

parameter, {5, computed from eq. (12-a) is listed in Table 1 for most
commonly used fibrous composite materials given in Table 2. Also, it

should be noticed that the ISV for matrix cracks described herein can

be obtained by assuming fixed grip mode, in which u,/a is treated as a

known variable.
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For an isotropic material, the normalized axial stiffness from the

self consistent model[4] is given by

1
511/811 = - 1-¢2s (13-5)
W T e (Lvd) (e/a)
Thus,
1
{2.s - (13-b)
’ 2 (a/t)
1 4+ -
n(1-v2)

Please notice that eq. (13-a) can be directly obtained from the crack
opening displacement calculated from fracture mechanics as described

below.

The mode I crack opening displacement, u,, is given by

2(1-v2)a )
O —" [ €~ ) (14-a)
E

The average value of u, along the crack surface becomes

2(1-v2)0 f:/ (z2-y2)dy

E 2t

Ux,ave -~

rt(l-vz)a

2E
The contribution of uy ,ye to the observable strain is then given by

Uy ave/2 = (7/2)(1-v2)(t/a)(a/E) (14-c)

17
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when the representing volume is 4at. The normalized axial stiffness

is expressed by

1

S11/S17 =
/51 1 + (x/2)(1-v2)(t/a)

which is identical to eq. (13-a) obtained from the self consistent

model.

The matrix crack parameter, (o, is plotted in Fig. 4-a for iso-
tropic materials with various Poisson’s ratios. Fig. 4-b shows that ()
is almost independent of the material systems which have been commonly
used for measuring the effect of matrix cracks on the axial stiffness.

In Fig. 5, the crack parameters for various isotropic materials are

compared with those calculated from the self-consistent model.
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RESULTS AND DISCUSSION

The suitability of any theoretical model must be assessed by com-
paring the model with other models and/or experimentally measured data,
This is accomplished herein by comparing the present model predictions
with the non-dimensionalized effective Young’s moduli (normalized
stiffnesses) of glass/epoxy and graphite/epoxy specimens in the open
literature(l, 10). Among published experimental data, the stiffness
reduction in [0/90,3])¢ glass/epoxy specimen reported by Highsmith and
Reifsnider [1) has been frequently cited by other reseafchers[s, 6, 7).
For this specific experimental data, the authors compared the present
model with other models (1, 5, 6, 7 ] in Fig. 6-a. Also, the experimen-
tal data from AS-4/3502 graphite/epoxy specimens with a number of
cross-ply stacking sequences{3] are compared with the present model

predictions in Figs. 7-a to 7-4.

The comparisons illustrated in Fig. 6 and Fig. 7 verify that the
present model gives a fairly accurate prediction of the degraded axial
stiffness as a function of the crack density for two commonly used
material systems. Furthermore, it should be noticed that the crack den-
sity(number of cracks per unit length) is not appropriate for repre-
senting the matrix crack characteristics. As an example, consider
(0,/90,]¢ specimens. If the crack density is utilized as an independent
parameter, the normalized stiffnesses of [0/90])¢ and [07/905]¢ will be
different at the same crack density as shown in Figs. 7-a and 7-b.
This violates the most important assumption in the continuum mechanics,

i. e., observable state variables are independent of the size of the
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domain of interest. On the contrary, the ratio of the crack length to
the distance between two adjacent cracks, t/a, eliminates this incon-
sistency as i{llustrated in the same figures. Also, the study of Talreja
(Fig. 17 of ref.[8]) shows a similar result. Thus, the authors strongly
recommend to use a non-dimensional parameter, t/a, as an independent
parameter instead of the crack density for characterizing matrix cracks
in fibrous composite materials. This type of non-dimensional parameter
as an independent variable is an essential tool especially for describ-
ing history dependent phenomena such as plastic deformation of the con-

stivuents cof metal matrix composites.

Since the Internal State Variable defined by eq. (l) is a general
expression for an arbitrary damage mode, the entire mathematical formu-
lation presented herein can be easily modified for {0q/901.]n.s Type
laminates or angle-ply laminates with arbitrarily shaped matrix cracks
and interfacial delaminations. For a [0,_1/90,__]n,s laminate, the present
model can be directly applicable without any correction if our interest
is restricted to the effective axial Young’'s modulus as a function of
t/a. For off-axis or curved matrix cracks, the present model can be
generalized by utilizing the conventional tensor transformation law
for ajj- However, another ISV is reéuired for modelling the effect of
interfacial delaminations on the observable ;tiffnesses. This will be
accomplished by assuming relatively simple displacement fields similar
to eq. (3-a) to eq. (3-c) for matrix cracks together with a series/
parallel spring model for regions adjacent to interfacial delamina-

tions.
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The analytical solution to the crack parameter, (3, includes the
crack interaction in an explicit form. Furthermore, the internal state
variable, ayy, results directly from the strain energy loss due to
matrix cracks[9]). By combining the present problem solving technique
with the study of Allen et al.{9], strain energy release rate at a
given matrix crack damage state can be predicted analytically. However,
the internal state variable presented herein may not be exact under the
following conditions.

(1) When the matrix crack size and spacing cannot be assumed to be

homogeneous.,

(2) When the matrix material should be assumed viscoelastic.

(3) When the matrix cracks are dominated by micro-cracks rather

than by those that cross the entire specimen width.

Even though the actual shapes of matrix cracks are quite different
from the idealized straight ome illustrated in Fig. 2, the comparison
between the present model prediction and experimental data from two

different material systems shows very close agreement.
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Table 1. Crack Parameter

Crack Parameter ({;)

t/a
- ‘Glass/Epoxy Graphite/Epoxy

0.0 0.0000 0.0000
0.1 0.0812 0.0828
0.2 0.1673 0.1704
0.3 _ 0.2559 0.2603
0.4 a 0.3415 0.3469
0.5 0.4189 0.4247
0.6 0.4857 0.4917
0.7 0.5421 0.5480
0.8 0.5891 0.5948
0.9 0.6284 0.6338
1.0 0.6613 0.6664




Table 2. Material Properties

Material
Property
Glass/Epoxy Graphite/Epoxy
Ref. [1) Ref. [10])
E;p(Msi) 6.048 21.0
Epr(Msi) 1.885 1.39
Grr(Msi) 0.493 0.694
YLT 0.300 0.310
vor 0.420% 0.461%
One Ply 0.008 0.005

Thickness(in.)

* Assumed Values
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Fig. 1. Discrepancies between the Classical Ply Discount Method

and Experimental Observations

(a) [0/903])¢ Glass/Epoxy[l]

(b) [0/903)g Graphite/Epoxy[3]
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